
Poster: ECIoT: Case for an Edge-Centric IoT Gateway
Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J. Salo, Zhi-Li Zhang

Department of Computer Science & Engineering, University of Minnesota – Twin Cities, U.S.A.
{dayal007,fezeu001,varya001,salox049,zhang089}@umn.edu

ABSTRACT
Numerous cloud service providers (CSPs) have developed IoT gate-
ways and devices that connect IoT devices solely to their respective
clouds. We term these gateways cloud-centric. In this paper, we
propose an alternative, edge-centric approach to developing IoT
gateways, Edge-Centric IoT Gateways, or ECIoT. ECIoT gateways
will: enable sites to direct IoT sensor data to the CSP of their choice
for processing and storage and permit IoT sensor data to be easily
and efficiently forwarded to multiple CSPs simultaneously, which
can simplify these functions in multi-vendor IoT systems. Evaluation
of a preliminary, proof-of-concept prototype suggests that the ECIoT
gateway can achieve these multi-vendor objectives with minimal
overhead.

KEYWORDS
IoT Edge Device, IoT Gateway, IoT Cloud

ACM Reference Format:
Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J.
Salo, Zhi-Li Zhang. 2021. Poster: ECIoT: Case for an Edge-Centric IoT
Gateway. In The 22nd International Workshop on Mobile Computing Systems
and Applications (HotMobile ’21), February 24–26, 2021, Virtual, United
Kingdom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3446382.3448667

1 INTRODUCTION & MOTIVATION
Many cloud service providers (CSPs) have developed their own
IoT gateways and devices. Typically, these gateways and devices
connect solely to their respective cloud services. However, these
vendor-specific IoT gateways often make it difficult to connect IoT
devices to alternate CSPs. This "vendor lock-in" presents sites that
have deployed IoT gateways and devices from multiple vendors with
several challenges: 1) directing IoT sensor data to an alternative CSP,
a CSP other than the one to which the gateway or device is "locked",
for processing and storage is extremely difficult; 2) analyzing IoT
data with a unified application that processes data generated by IoT
devices supplied by multiple vendors becomes very challenging; at
best, the data must be forwarded from multiple applications running
on different CSPs to a common application for processing, rather
than permitting the common application to receive the sensor data
directly from the IoT devices, and 3) device management becomes
cumbersome, because each vendor’s IoT devices are locked to that
vendor’s device configuration and management tools.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448667

(&ͲQ6�*CVGYC[
9HQGRU�$
6'.9HQGRU�%
6'.9HQGRU�&
6'.V

:HE�6HUYHU
/RFDO�

'DWDEDVH

4W
PV
KO

G

4GCN�5KOWNCVGF�
ͲQ6�'GXKEGU

(FIG�
)WPEVKQPU 4WPVKOG/366��+662�QT�&Q$2

�

�

�

7DVN
�4XHXLQJ

(FIG�
'GXKEGU

(FIG�
'GXKEGU

(FIG�
'GXKEGU

8GPFQT�&8GPFQT�%8GPFQT�$

0477�%URNHU5HJXODWRU

7DJ��VWHHU
SROLF\

5RXWHV��
)LOWHULQJ���

'HYLFH�VHFXULW\�&RQWH[W

���

ͲQ6�+WD

,R7�&ORXG

���

ͲQ6�+WD

,R7�&ORXG

���

ͲQ6�+WD

,R7�&ORXG

NH\V��FHUWV��DXWK��PHFKDQLVPV

Figure 1: Edge-Centric IoT Gateway Framework

Several CSPs, including Microsoft [8], Amazon (AWS)[3] and
Google [1]) have made available IoT gateway platforms, or software
development kits (SDKs), that IoT vendors may integrate into their
IoT devices or gateways. These CSP-provided SDKs simplify the
development of IoT devices and gateways, but at the expense of
locking the vendors into to the SDKs’ respective cloud services.
We term these commercial IoT gateways as cloud-centric , as their
primary goal is to connect IoT devices and marshal IoT data to the
CSP’s cloud. Such cloud-centric solutions not only lead to "walled"
IoT ecosystems that are not interoperable [5], but also create various
management issues and performance inefficiencies.

In this paper, we advocate an edge-centric architecture for design-
ing IoT gateways. Instead of merely connecting IoT devices to cloud
services, we envision an edge-centric IoT gateway that i) leverages
computing and storage capabilities at the network for edge-based
device management and ii) exploit availability of multiple cloud
services (from different vendors) for "best" (E.g., fastest or cheapest)
IoT data analytic. We achieve this by introducing regulator. Regu-
lator is built atop existing vendor IoT gateway SDKs and enables
flexible device configuration and data management, dynamic cloud
service subscriptions and message routing. To realize the ECIoT
vision, we designed the regulator, an ECIoT gateway subsystem that
manages communication between vendor-specific IoT gateways and
devices, and their respective cloud services. Evaluation results show
that regulator achieves these multi-vendor objectives with negligible
overhead although this additional overhead may negatively impact
low-latency applications.

2 PROPOSED ECIOT: DESIGN
Fig. 1 summarizes the high-level architecture of the ECIoT gateway.
At a high level, our design introduces a wrapper dubbed Regulator,
which controls the communication links to the cloud-based applica-
tions. We further leverage current vendor gateway SDKs to connect
to their IoT cloud portals enabling edge-functionalities.

Runtime: In our design, the runtime does the heavy work. As
our goal is to build atop existing IoT gateways, our design leverages
existing vendor gateway runtimes. AWS GG and Azure IoT gateway

153

https://doi.org/10.1145/3446382.3448667
https://doi.org/10.1145/3446382.3448667
https://doi.org/10.1145/3446382.3448667
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3446382.3448667&domain=pdf&date_stamp=2021-02-24

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Udhaya & Rostand, et al.

with
regulator

without
regulator

Publisher IoT
Device

MQTT
Broker

Local Database
Edge-function

message

message

IoT
Cloud

message

message
message

Regulator
Edge-function

message

message

Figure 2: Sequence diagram of message flow in ECIoT

runtimes [2, 8] come pre-build with a task scheduler, and an MQTT
Broker (for receiving IoT data from IoT edge devices and forwarding
to the their clouds). We therefore use both runtimes during our
implementation and show evaluation results in sec. 5. We further
augment their runtimes with Regulator. We present a detail overview
of Regulator later in this section.

IoT gateway SDKs: Within our edge-centric IoT gateway, we run
Google, Azure and AWS gateway SDKs [4, 7, 8] as edge-functions.
They provide the RESTFul APIs to communicate with their IoT
cloud portal. However, as describe later, regulator controls all paths
in our design bringing IoT data closer to the edge. We host a local
database for data storage and a web server for local configurations
and management, which in turn alleviates the cloud-centric manage-
ment. Both the web sever and database run as edge-functions.

Regulator - Edge-function: In our gateway design, regulator is
primarily controlled by user configuration via the local webserver.
Specific configuration options like "disable publish to cloud", "delete
path x" and "create path y" can be configured. We consider "disable
publish to cloud" during our implementation to show preliminary
results later-on.

Traditionally, performing this function requires manually deleting
and redeploying the configuration locally on the gateway on premise.
Unlike current gateways, ECIoT’s webserver edge-function performs
a runtime interrupt via regulator. (i) Regulator leverages the run-
times’ exposed APIs to discover the current static paths (source,
destination, topics) pairs. (ii) It creates (if it does not exist) a new
"shared topic" and subscriber (usually the local database) on the sys-
tem and (iii) temporally disables the cloud facing path and redirects
every packet via the new "topic"(path).

3 IMPLEMENTATION AND EVALUATION
Our experiment setup consists of an IoT Gateway, simulated IoT
devices and their respective vendor-specific cloud portals. We used
a Raspberry Pi2 to run ECIoT. We use both AWS and Azure IoT

0 20 40 60 80 100

5

10

cp
u

Regulator
NoRegulator

0 20 40 60 80 100
Time [Seconds]

38

39

40

us
ed

RA
M

Figure 3: Azure runtime memory and cpu utilization

Gateway runtimes in our evaluation. We ran simulated IoT devices
to send MQTT messages to ECIoT periodically. We didn’t use any
server instances in the cloud for the setup other than the basic MQTT
broker and the MQTT cloud test utility provided by the respective
IoT hub frameworks to view the MQTT messages on the cloud.

We implemented four edge-functions: a web-server, regulator, a
local database and Google IoT SDK. The web-server serves web-
api’s along with web pages for the various local configurations of
ECIoT. The local database is used to store IoT data. To enable multi-
vendor CSPs communication, we configured the Google IoT device
SDK as an edge-function in both AWS and Azure runtimes. Since
the necessary security mechanisms are already implemented within
the SDK, the Google SDK edge-function is able to authenticate and
communicate with the Google cloud (Google IoT Core) [6]. These
communication is controlled and managed by regulator as discussed
next.

During the start-up sequence of the regulator, a local message
subscription configuration file is loaded with the list of message
topics or endpoints and a flag to indicate whether the message should
be forwarded to the cloud or not. Changes to this local configuration
file is done via the local web server. Even though there may be a
message subscription configured in the cloud, regulator overrules
these configurations and controls the traffic based on the local user
configuration. Fig. 2 shows how the MQTT message paths are altered
with regulator. Through this implementation, we are able to enhance
the existing IoT Gateway frameworks to support local control of
the message subscriptions regardless of cloud configurations and
enable local control of the message routes between vendor-specific
IoT Gateways and multi-vendor IoT Hubs, which is not supported
in traditionally IoT Gateways.

3.1 Evaluation
In this section, we seek to understand the performance degradation
incurred in our proposed design. In Fig. 2, we show the sequence
diagram of the packets flow in our proposed gateway with and with-
out regulator. We can see that, once regulator is introduced into
the system, every packets from the mqtt broker is routed via regula-
tor. The traffic is then steered based on the local user configuration.
Regulator serves as a wrapper to enable dynamic subscriptions and
interoperate between different vendor platforms.

On the gateway, we collect the CPU and memory utilization with
and without regulator. Fig 3 and 4, both show the CPU (top plot) and
RAM usage (bottom plot) performance metrics collected. Observe
that, as expected, augmenting both AWS GG and Azure runtimes

0 20 40 60 80 100
2

4

6

cp
u

Regulator
NoRegulator

0 20 40 60 80 100
Time [Seconds]

29.0

29.5

30.0

us
ed

RA
M

Figure 4: AWS runtime memory and cpu utilization

154

Poster: Case for ECIoT HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom

0 20 40 60 80 100
Number of Pkts sent

0.02

0.04

tim
eD

el
ay

[s
] Regulator

NoRegulator

Figure 5: AWS runtime time delay

0 20 40 60 80 100
Number of Pkts sent

0.05

0.10

tim
eD

el
ay

[s
] Regulator

NoRegulator

Figure 6: Azure runtime time delay

with regulator (the blue line) result in more CPU and Memory usage.
This is because, all packets through the gateway is processed by
regulator, i.e., the packet header information needs to matched the
paths deployed on the system before routing.

Next, we want to quantify the additional delay incurred by pro-
cessing every packets with regulator. We simulated IoT devices to
publish data to ECIoT and logged the time when every packet is sent.
We configure a path to route every packet to the local database, where
we log the time every packet is received. We repeat this experience
with and without regulator deployed. In Fig. 5 and 6, we show the
delay incurred with regulator (the blue curve) and without regulator
(the red curve) leveraging both AWS GG runtime and Azure runtime
respectively. As observe, regulator, as a wrapper incurs negligible
overhead while still supporting current vendor SDK gateways.

4 CONCLUSIONS AND FUTURE WORK
To conclude, we proposed a shift from a Cloud-centric to an Edge-
centric approach to IoT. We introduced regulator, which augments
current vendor locked IoT platform solutions and controls the paths
from gateway SDKs to the cloud. Evaluations of our experiments
show that our approach incurs an additional negligible overhead and
minimal latency. Nonetheless, we acknowledge that this additional
overhead may negatively impact low-latency applications in certain
IoT scenarios. This study extenuates that possible research directions

can be 1) to address the interoperability issues with vendor edge
devices and 2) build an IoT gateway runtime to support heavy edge
computational tasks and connect to multiple vendor cloud platforms.

5 ACKNOWLEDGEMENT
The research was supported in part by NSF under Grants CNS-
1618339, CNS-1617729, CNS-1814322, CNS-1836722 and CNS-
1901103.

REFERENCES
[1] Google Cloud . 2019. Overview of Internet of Things | Solutions | Google Cloud.

(02 2019). https://cloud.google.com/solutions/iot-overview
[2] AWS. [n. d.]. Configure devices and subscriptions. ([n. d.]). https://docs.aws.

amazon.com/greengrass/latest/developerguide/config-dev-subs.html
[3] AWS. 2018. Run Lambda functions on the AWS IoT Greengrass core - AWS

IoT Greengrass. (11 2018). https://docs.aws.amazon.com/greengrass/latest/
developerguide/lambda-functions.html

[4] AWS. 2019. Machine Learning Inference with AWS IoT Greengrass Solution
Accelerator. (10 2019). https://aws.amazon.com/iot/solutions/mli-accelerator/

[5] Sharu Bansal and Dilip Kumar. 2020. IoT Ecosystem: A Survey on Devices,
Gateways, Operating Systems, Middleware and Communication. International
Journal of Wireless Information Networks (2020), 1–25.

[6] Google Cloud. 2019. Publishing over the MQTT bridge | Cloud IoT Core Docu-
mentation. (2019). https://cloud.google.com/iot/docs/how-tos/mqtt-bridge

[7] Google. [n. d.]. Using gateways. ([n. d.]). https://cloud.google.com/iot/docs/
how-tos/gateway

[8] Microsoft. [n. d.]. Configure an IoT Edge device to act as a trans-
parent gateway. ([n. d.]). https://docs.microsoft.com/en-us/azure/iot-edge/
how-to-create-transparent-gateway

155

https://cloud.google.com/solutions/iot-overview
https://docs.aws.amazon.com/greengrass/latest/developerguide/config-dev-subs.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/config-dev-subs.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/lambda-functions.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/lambda-functions.html
https://aws.amazon.com/iot/solutions/mli-accelerator/
https://cloud.google.com/iot/docs/how-tos/mqtt-bridge
https://cloud.google.com/iot/docs/how-tos/gateway
https://cloud.google.com/iot/docs/how-tos/gateway
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-create-transparent-gateway
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-create-transparent-gateway

	Abstract
	1 Introduction & Motivation
	2 Proposed ECIoT: Design
	3 Implementation and Evaluation
	3.1 Evaluation

	4 Conclusions and Future Work
	5 Acknowledgement
	References

