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ABSTRACT

Remote driving or teleoperating autonomous vehicles (AVs)
represents a key use case targeted by emerging 5G networks.
This study investigates the feasibility and performance of
autonomous vehicle (AV) teleoperation over 5G networks.
Through cross-layer analysis and end-to-end evaluations,
we assess the impact of various factors on streaming perfor-
mance and latency. Novel per-frame Quality of Experience
(QoE) metrics are introduced to quantify visual quality de-
viation, providing granular insights into streaming quality.
The study also examines the effects of compression tech-
niques and adaptive bitrate strategies on latency and visual
quality. Additionally, the influence of 5G Radio Access Net-
work (RAN) factors on latency is explored, highlighting key
considerations for optimizing teleoperation performance.
Furthermore, end-system mechanisms for enhancing tail la-
tency are investigated, contributing to the development of
robust AV teleoperation systems on 5G networks.
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1 INTRODUCTION

Autonomous Vehicles (AVs) have progressed significantly
since the 2005 DARPA Challenge, with Tesla, Waymo, Uber,
and Cruise achieving Level-4 autonomy [2, 5-7]. However,
Level-5 autonomy, where vehicles operate without human
intervention, remains challenging. AV teleoperation emerges
as a crucial step towards this goal.

The potential of 5G technology for AV teleoperation is
promising [1, 3, 4], yet its network requirements are unclear.
Safety is critical, demanding low latency and high bandwidth
for teleoperation. However, current 5G networks suffer from
downlink/uplink bandwidth asymmetry.

This study explores the feasibility of AV teleoperation on

5G networks, aiming to understand the challenges and oppor-
tunities for enhancing safety and efficiency in autonomous
transportation.
Contributions: In our study, we conducted a thorough anal-
ysis of AV teleoperation feasibility on 5G, employing cross-
layer and end-to-end approaches. We introduced per-frame
QoE metrics to assess visual quality deviation and examined
the impact of compression and adaptive bitrate techniques
on latency and visual quality. Additionally, we investigated
the influence of 5G RAN factors on latency and explored
end-system mechanisms for enhancing tail latency.

2 BACKGROUND

AV Sensors & Data Requirements: The MnCAV vehicle
integrates a suite of advanced sensors, including RGB cam-
eras, thermal cameras, LIDAR, radar, GPS/ GNSS, IMU, and
odometry. Notably, LiIDAR data predominates, comprising
79% of the sensory input, followed by video data at 17.2%,
with other sensor data making up the remaining <4%. This
comprehensive sensor fusion enables precise and safe navi-
gation in diverse environments.

5G Performance: The challenge for teleoperations lies in
the inherent asymmetry between 5G downlink (DL) and up-
link (UL) throughput. The average DL throughput for AT&T,
T-Mobile, and Verizon are 217 Mbps, 571 Mbps, and 370 Mbps,
respectively, while the corresponding average UL through-
put values are 47 Mbps, 72 Mbps, and 67 Mbps. While 5G DL
physical layer (PHY) throughput is notably higher than UL
PHY throughput, the teleoperation process demands more
bandwidth in the uplink direction. Transmitting data from
cameras and LiDAR sensors in the uplink requires greater
bandwidth compared to the relatively lighter control com-
mands sent to the AV in the downlink.
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3 EXPERIMENT SETUP & DATASET

On the vehicle side, the sender application subscribes to ROS
topics for video and LiDAR data, compresses it, and streams
it to the server. The server, hosted on an AWS instance, op-
erates a receiver application for teleoperation, establishing
connectivity with the vehicle through an SSH tunnel. To fa-
cilitate efficient video streaming, the system employs RTSP
and DASH-based LoL* protocols, while LiDAR data trans-
mission is managed through TCP/UDP socket programming.
The teleoperation system streams prerecorded video and Li-
DAR data collected from a cross-state driving campaign. We
stream data through various driving routes across different
city environments.

We introduce the following QoE metrics to quantify uplink
video/LiDAR data sensor streaming performance:

e Per-frame total delay: Time from frame generation
to complete reception and readiness for playback at
the receiving side.

o Per-frame network delay: Time from the first packet
transmission to the last packet reception at the receiv-
ing side.

e Video quality: Assessed using standard metrics like
PSNR and SSIM.

e Perceptual quality deviation: Measures the differ-
ence in SSIM values between expected and actual frames
at playback time.

4 RESULTS

Application Layer: In the analysis of application layer Qual-
ity of Experience(QoE) results, two scenarios of single MJPEG
video streaming were evaluated: one using RTSP and the
other utilizing LoL*. For the RTSP scenario, it was observed
that the distribution of per-frame network delay exhibited a
long-tailed pattern, with approximately 25% of frames expe-
riencing delays exceeding 100 ms. Additionally, the cumu-
lative delay effect was evident, as total delay accumulated
from past queueing delays. Moreover, it was found that this
cumulative delay had a proportional impact on perceptual
quality, underscoring the importance of managing delay for
maintaining video quality. In the case of LoL* video stream-
ing, it was noted that while latency performance gains were
achieved, they came at the cost of reduced video quality. This
highlights the trade-off between latency and video resolution
adaptation, emphasizing the need for balancing these factors
to optimize streaming performance.

Impact of 5G RAN on AV Teleoperation: The impact of
5G RAN factors on AV teleoperation, specifically per-frame
network delay, was investigated. Analysis revealed that delay
increases significantly with higher Block Error Rate (BLER),
rising by 155% when transitioning from 0-5% BLER to 10+%
BLER. Similarly, delay also showed a substantial increase,
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by 48%, from low to high Channel Quality Indicator (CQI)
levels. These findings underscore the critical influence of 5G
RAN parameters on the latency experienced in AV teleoper-
ation, highlighting the importance of optimizing lower-layer
network conditions for seamless operation.

5 CONCLUSION

In summary, this study explores the feasibility of teleoperat-
ing autonomous vehicles (AVs) over 5G networks. Through
thorough analysis and evaluations, we assess factors im-
pacting streaming performance and latency. Introduction of
novel per-frame Quality of Experience (QoE) metrics pro-
vides insights into streaming quality, while exploring effects
of compression techniques and adaptive bitrate strategies
on latency and visual quality. Analysis of 5G Radio Access
Network (RAN) factors highlights optimization considera-
tions, and investigation into end-system mechanisms aims
to enhance tail latency for robust AV teleoperation on 5G
networks.
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