
Poster: Unveiling IoT Devices Provisioning Process
Rostand A. K. Fezeu, Timothy J. Salo, Amy Zhang, Zhi-Li Zhang

Department of Computer Science & Engineering, University of Minnesota – Twin Cities, U.S.A.
{fezeu001,salox049,zhan7007,zhang089}@umn.edu

ABSTRACT
In this paper, we conduct a first measurement study to exam-
ine the provisioning process used by smart home IoT devices.
Through reverse-engineering techniques, we capture, decrypt
and analyze the message exchanges among IoT devices, the
vendor-specific mobile app and vendor cloud services, and
investigate their security and privacy implications. Further-
more, we carry out a series of experiments and demonstrate
the feasibility of developing an open, edge-centric framework
for device isolation and device/network/cloud segregation,
with an eye towards automatically setting up, managing and
securing IoT devices.

ACM Reference Format:
Rostand A. K. Fezeu, Timothy J. Salo, Amy Zhang, Zhi-Li Zhang.
2021. Poster: Unveiling IoT Devices Provisioning Process. In In-
ternet Measurement Conference (IMC ’21), November 2–4, 2021,
Virtual. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3446382.3448667

1 INTRODUCTION
Today’s smart home IoT devices follow an opaque, closed
"device-to-cloud" stovepipe model, i.e., cloud-centric [1]. A
user’s first interaction with a new smart home IoT device is to
"provision" (connect) the device to their Wi-Fi for subsequent
device management and control via the vendor-specific mo-
bile app. This provisioning process is largely a manual and
one-device-at-a-time task that is cumbersome, error-prone,
and time-consuming. As the number of devices increase to 50
per household by 2025 [2], this process becomes unwieldy.
We are also left with lingering concerns: How trustworthy are
the devices/vendors? Do they store my Wi-Fi password and
other personal or private information in the cloud? Might they
offer an entry for hackers into my home network?

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
IMC ’21, November 2–4, 2021, Virtual
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448667

User

CloudAppRouterPhoneCIoT Device

CloudAppRouterPhone

Change mode (AP/
EZ)

Open
Input router’s SSID/password

Connect to device’s AP

User can
control device

Connect

Request token HTTPS

Send router SSID, password, and token

Connect to MQTT server (port 1883)
Bind CIoT device to user.

Invoke method
startConfig().

Ti
m

e

AP mode only Shared: AP or EZ mode

Send token

Authenticate to router

User

IoT Device
1

Generate ARP announcement

2

4

3

5

Figure 1: A summary of the data exchanged involved dur-
ing the EZ and AP Modes device setup process.

To address these concerns, we reverse-engineer smart home
IoT device provisioning processes. Our goal is two-fold: i)
Gain a deeper understanding of the provisioning steps to ex-
amine their security and privacy implications and ii) Explore
the feasibility of developing an open, edge-centric platform
for automatically provisioning smart home IoT devices.

2 IOT PROVISIONING PROCESS
To uncover the provisioning process, we design two toolkits to
capture and decrypt messages exchange amongst the mobile
apps, the vendor cloud, and the internet for in-depth analysis.

IoT-Dissect I: Our testbed consists of several IoT devices
under study, a Wi-Fi network using an OpenWRT access point
instrumented with a packet-capture tool (Wireshark), and an
Android phone running the vendors’ mobile apps. A “man-
in-the-middle” (MITM) SSL proxy intercepts traffic between
the Wi-Fi network and the outside vendor cloud services.

IoT-Dissect II. For an in-depth analysis, we utilize reverse-
engineering techniques: “Code injection“ and “function trac-
ing“ techniques are used to perform code analysis on each
vendor’s mobile app (.apk files) and collect information about
its operations. For example, function tracing passively moni-
tors selected function calls within the .apk files as the HTTPS
requests and responses are encrypted and decrypted. Code-
injection is used to extract and log the plaintext PostData
field of each request before it is encrypted by the mobile apps
and each response after it is decrypted by the mobile apps.

2.1 Preliminary Observations
Using IoT-Dissect I, we observed that the provisioning pro-
cesses of all IoT devices (five devices, including four light
bulbs and a smart plug) we examined used the same initial

https://doi.org/10.1145/3446382.3448667
https://doi.org/10.1145/3446382.3448667
https://doi.org/10.1145/3446382.3448667

IMC ’21, November 2–4, 2021, Virtual Rostand A. K. Fezeu, et al.

1, 3, 6, 10, 1, 3, 6, 10, 1, 3, 6, 10...
Idle Sync

pkts.

18, 35, 60, 65 xx, x, xx, xxx

Start-of-message
Character pkts.

Network
Credential pkts.

... 18, 35, 60, 65 xx, x, xx, xxx

Start-of-message
Character pkts.

Network
Credential pkts.

Numbers =UDP Pkts
Lengths

Figure 2: Broadcast UDP packets

sequence, as shown in Fig. 1. (1) The mobile app first con-
nects to the vendor cloud services and request a provisioning
token. (3) The mobile app gets the user’s SSID & pass-
word and transmits that information along with the token
encoded in a sequence of UDP packets broadcasted on port
30011 to the device. (4) The IoT device authenticates to the
user’s Wi-Fi and then binds itself to the vendor cloud services
using the token. (5) The user can now control the device
using the mobile app via the vendor cloud services1.

Using IoT-Dissect II, we discover how the network creden-
tials (SSID/password/token) are encoded and broadcast in a
sequence of UDP packets to IoT devices. As shown in Fig. 2,
the UDP packets consist of Idle sync packets: A sequence of
four UDP packets with data lenghts of 1, 3, 6, and 10 bytes to
provide "character" sync. State-of-message character: Four
packets with data lengths of 18, 35, 60, and 65 bytes indi-
cating the start of data content (the credentials). Network
credential packets: A series of varying lengths UDP packets
containing the SSID, password and token.

3 BREAKING THE OPAQUE, CLOSED
"DEVICE-TO-CLOUD" STOVEPIPE

3.1 IoT Devices and tokens
In §2, we observed that the token is 32-characters. To fur-
ther understand the role of this token in device-cloud iden-
tification and authentication, we conduct a series of exper-
iments with encoded UDP packets containing the network
credentials and randomly generated (i.e., arbitrary lengths and
32-characters) tokens and a recently received 32-character
token from the cloud to communicate with the IoT device.

Our experimental results suggest that the IoT devices em-
ploy a rudimentary “authentication” process to check the
validity of a vendor-generated token solely based on the
length. The token is primarily used by the IoT device to
authenticate itself to the vendor cloud services. The vendor-
generated token is typically valid for about two hours [4];
hence any previously generated token older than two hours
will be rejected by the vendor cloud services (as a way to
defend against replay attacks).

1, the mobile apps do not directly control the IoT device over the home
Wi-Fi network. Hence if a user loses Internet connectivity, the user eventually
loses control of the home IoT devices, even though the home network is up
and running.

3.2 Isolating device-cloud communications
The above experiments illustrate a potential ‘token replay”
attack vulnerability. This is partially possible because, IoT
devices always listen on UDP port 6668 (MQTT) or UDP
port 1883 (secure MQTT). We therefore set out to investigate
whether it is possible to segment the “direct” device-cloud
channel via a trusted intermediary (e.g., our envisaged “open,
edge-centric” IoT platform residing at a user’s home).

The key challenge is that all HTTPS post requests are
signed by the mobile app using secret keys. Using IoT-Dissect
II, we extract all the keys (including the steganograph-hidden
secret key[3]), compute the HMAC_SHA256 hash and suc-
cessfully sign post requests to the vendor clouds and obtain a
token used to automate IoT devices provisioning.

4 CONCLUSIONS & FUTURE WORK
We have conducted – to the best of our knowledge – a “first-
of-a-kind” in-depth measurement study of smart home IoT
device provisioning processes. Our study demonstrates the
feasibility of an open, edge-centric framework for managing
and securing smart IoT devices that does not rely on the
vendor cloud i.e., breaking the “device-to-cloud” stovepipe.
With such an open framework, “management” apps developed
by IoT device vendors/third-parties using the framework may
be automatically downloaded, validated and verified before
deploying on a user’s smart home network for automatic
provisioning based on user-specified security/privacy intents.

ACKNOWLEDGEMENT

The research was supported in part by NSF under Grants CNS-
1618339, CNS-1814322, CNS-1831140, CNS-1836772, and CNS-
2106771.

REFERENCES
[1] Udhaya Kumar Dayalan, Rostand AK Fezeu, Nitin Varyani, Timothy J

Salo, and Zhi-Li Zhang. 2021. VeerEdge: Towards an Edge-Centric IoT
Gateway. In 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 690–695.

[2] Nick G. 2019. How Many IoT Devices Are There In
2020? More Than Ever! (02 2019). https://techjury.net/blog/
how-many-iot-devices-are-there/#gref

[3] Neil F Johnson and Sushil Jajodia. 1998. Exploring steganography:
Seeing the unseen. Computer 31, 2 (1998), 26–34.

[4] Tuya Smart. 2021. Authorization Management-Documentation-Tuya
Developer. (03 2021). https://developer.tuya.com/en/docs/iot/open-api/
api-reference/authorization/oauth-management?id=K95ztzpoll7v5

https://techjury.net/blog/how-many-iot-devices-are-there/#gref
https://techjury.net/blog/how-many-iot-devices-are-there/#gref
https://developer.tuya.com/en/docs/iot/open-api/api-reference/authorization/oauth-management?id=K95ztzpoll7v5
https://developer.tuya.com/en/docs/iot/open-api/api-reference/authorization/oauth-management?id=K95ztzpoll7v5

	Abstract
	1 Introduction
	2 IoT Provisioning Process
	2.1 Preliminary Observations

	3 Breaking the Opaque, Closed "Device-to-Cloud" Stovepipe
	3.1 IoT Devices and tokens
	3.2 Isolating device-cloud communications

	4 Conclusions & Future Work
	References

