Check for
Updates

Kaala: Scalable, End-to-End, loT System Simulator

Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, Zhi-Li Zhang
{dayal007,fezeu001,salox049,zhang089}@umn.edu
Department of Computer Science & Engineering, University of Minnesota — Twin Cities, USA

ABSTRACT

We introduce Kaala, a scalable, hybrid, end-to-end IoT system sim-
ulator that can integrate with diverse, real-world IoT cloud services.
Many IoT simulators run in isolation and do not interface with
real-world IoT cloud systems or servers. This isolation makes it
difficult for experiments to fully replicate the diversity that exists in
end-to-end, real-world systems. Kaala is intended to bridge the gap
between IoT simulation experiments and the real world. The simu-
lator can interact with cloud IoT services, such as those offered by
Amazon, Microsoft and Google. Kaala leverages vendor-provided
software development kits (SDKs) to implement the vendor-specific
protocols that are necessary permit simulated IoT devices and gate-
ways to seamlessly communicate with real-world cloud IoT systems.
Kaala has the ability to simulate a large number of diverse IoT de-
vices, as well as to simulate events that may simultaneously affect
several sensors. Evaluation results show that Kaala is able to, with
minimal overhead, seamlessly connect simulated IoT devices to
real-world cloud IoT systems.

CCS CONCEPTS

+ Networks — Network simulations; - Computing methodolo-
gies — Simulation environments; « Software and its engineering
— Simulator / interpreter.

KEYWORDS

IoT devices, IoT simulator, IoT Gateway SDK, IoT cloud, 5G, Net-
work

ACM Reference Format:

Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, Zhi-Li Zhang.
2022. Kaala: Scalable, End-to-End, IoT System Simulator. In NET4us *22: ACM
SIGCOMM 2022 Workshop on Networked Sensing Systems for a Sustainable
Society (NET4us °22), August 22, 2022, Amsterdam, Netherlands. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3538393.3544937

1 INTRODUCTION

The proliferation of IoT devices in recent years has made it possible
to develop innovative smart services for homes, offices, businesses,
cities and communities. Large cloud service providers, such as
Amazon, Microsoft and Google, offer cloud-based IoT data analytics
and Al services for collecting, storing and processing the massive
amounts of IoT data these devices generate. Because these new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NET4us °22, August 22, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9392-8/22/08...$15.00
https://doi.org/10.1145/3538393.3544937

33

cloud IoT services often obviate the need for IoT device vendors to
deploy their own data centers, cloud services have become integral
components of most IoT systems.

Cloud IoT service vendors, such as AWS [1], Azure [4], Google
[7] and Alibaba, all aim to build their own IoT ecosystems, which
currently do not interoperate with each other. According to the
UNIFY IoT project, more than 360 IoT companies exist today [13].
While there are industry-led efforts to ensure interoperability be-
tween cloud IoT services (e.g., via CHIP [6]), non-interoperable
cloud IoT services are likely to remain the rule, rather than the
exception, for some time.

Prototyping, testing and evaluating new IoT devices and sys-
tems can be expensive. Beyond the cost of the devices themselves,
setting up, configuring and maintaining a diverse collection of phys-
ical IoT devices can quickly become time-consuming, cumbersome,
unwieldy and expensive. As a result, simulators are often used
to test and evaluate new product ideas and designs early in the
development process. Since cloud services have become a critical
component of many IoT systems, it is beneficial that these simula-
tions be able to evaluate end-to-end systems, from the IoT devices
to the IoT cloud services. However, simulating end-to-end IoT sys-
tems as shown in Fig. 1 is complicated by the vendor-specific nature
of these cloud IoT services. Each vendor requires IoT devices to
implement a different set of protocols to authenticate, manage, and
collect data from these devices. As a result, IoT devices are often
effectively locked into one cloud IoT service provider [8] [9].

An alternative to waiting until physical devices have been devel-
oped and constructed, is to use IoT simulators to test and evaluate
prospective IoT devices, systems, and designs. If these simulators
and experiments are designed properly, simulation can significantly
reduce the gap between proof-of-concept (PoC) implementations
and real world deployments [5]. Unfortunately existing IoT simula-
tors are limited in their capabilities and scopes. 1) Many simulators
are designed to run on a single laptop, desktop or a server, and are
therefore poorly positioned for large-scale simulations that require
significant computational power. 2) Most of simulators fail to cap-
ture the large variety and diversity of IoT devices that exist today.
For example, many are tailored to simulating only small sensors
with low bandwidth requirements, ignoring a variety of IoT devices
(e.g., surveillance cameras and autonomous vehicles) that consume
large amounts of network bandwidth and require real-time cloud
connectivity. 3) Perhaps more importantly, existing IoT simulators
operate in isolation: they interface with only a limited number of
types of IoT devices and can not be integrated with existing cloud
services. In short, existing IoT simulators cannot be used to effec-
tively test and evaluate prototype IoT systems, especially those that
require computationally intensive subsystems, such as machine
learning algorithms, Cloud IoT services, or IoT control mechanisms
running on edge computing facilities. Chernyshev et al. [5] in a
recent survey highlighted that an all-in-one simulator capable of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3538393.3544937&domain=pdf&date_stamp=2022-08-22

NET4us "22, August 22, 2022, Amsterdam, Netherlands

np

loT Gateway

loT Cloud @

T_‘

Sma;f Lights@>

loT Devices

Smart Rail gmart Cal§treetlights

loT Edge Devices

Smart Tap

Figure 1: IoT (Edge) Devices, IoT Gateway and IoT Cloud

supporting an end-to-end IoT service has yet to be developed. New
simulation tools and test-and-evaluation environments are sorely
needed for unit testing and for the systematic evaluation of intel-
ligent IoT services that include diverse, integrated devices, edge
computing and cloud computing components.

In this paper, we present Kaala — a modeling, simulation and em-
ulation platform that is capable of specifying IoT devices of various
types, from low-powered sensors to smart IoT devices requiring
high bandwidth, such as IoT devices that anticipate emerging 5G
networks. In addition to simulating IoT devices, an important fea-
ture of Kaala is its ability to interface and connect with real-world
cloud IoT services in an integrated fashion. The initial version of
Kaala can use Amazon AWS [1], Microsoft Azure [4] and Google
[7] IoT cloud services. The main design goal of Kaala is to help re-
searchers and practitioners to quickly prototype various IoT scenar-
ios, including those that use high-bandwidth 5G services, generate
massive amounts of data, and to help bridge the gap that exists be-
tween simulators and real-world system. The major contributions
of our paper are summarized below.

o (Sec. 2.1 & 4.1) We present Kaala: An IoT modelling and
simulation platform that is able to specify IoT devices of
various types to communicate with real-world cloud IoT
systems, with AWS, Amazon and Google IoT Cloud platforms
as case studies.

e (Sec. 2.2 & 4.2) Kaala is a scenario-based IoT simulator ca-
pable of mimicking various IoT scenarios such as "fire in a
room or building" and "5G network capable data generation
(including 4K/8K video IP cameras)" scenarios.

e Kaala is able to generate massive amounts of IoT data for
prototyping data-intensive IoT applications.

The rest of the paper is organized as follow. We motivate the design
and use cases of Kaala in Sec. 2. The design and implementation
of Kaala are presented in Sec. 4 and Sec. 5, respectively. Kaala is
evaluated in Sec. 6 and conclude the paper in Sec. 7.

2 CASE FOR KAALA

In this section, we use two case studies to argue the case for Kaala,
while discussing their challenges.

34

Udhaya Kumar Dayalan, et al.

n . Simulated Real a
loT Data Azure
loT Cloud
loT Devices loT
Gateway AWS Kinetic
Video Streams

n # Video Stream
loT
——— Data

Edge
Figure 2: Kaala System Architecture

Google
loT Cloud

2.1 Ability to Interact with Real Systems

Emergent IoT applications are extremely complex and operate in
a very diverse IoT world. These are not just the smart speakers,
smart thermostats, smart door locks in our homes, but also sen-
sors used in domains like in the oil, gas and automobile industries.
These applications support different systems connected through
IoT. As shown in Fig. 3, there are no differences in data flow be-
tween real and simulated IoT devices. Researchers use simulators
to study, prototype, test, and evaluate new IoT concepts and ideas.
However, these simulators fail to reflect the complexity that exists
in real IoT environments. For example, current IoT simulators do
not simulate vendor-specific IoT devices [14]. The IoT simulator
provided by AWS [3] can only simulate one type of IoT device.
It simulates hard-coded IoT messages and does not simulate the
network characteristics (TCP/IP stack) along with massive IoT data.
To the best of our knowledge, current IoT simulators operate in
isolation and do not interact with real cloud IoT system, failing to
reflect the complexity present in the IoT world. Kaala is intended to
remedy these deficiencies. Kaala simulates several vendor-specific
IoT devices, (including those from AWS, Google, and Azure), and
is able to connect to and communicate with real-world cloud IoT
systems provided by these vendors. Kaala connects simulated IoT
devices with real servers (within the complex IoT world), so that
services provided by cloud service providers can be used, validated
and verified. For instance, Kaala connects simulated IP cameras,
temperature sensors, humidity sensors, and flame sensors to the
Amazon’s Kinetic video streams and builds logic around these sen-
sors to simulate a fire event.

2.2 Scenario-based Data/Event Simulation

We use a fire-in-a-building event to make the case for the need of a
scenario-based data generation and 5G service.

Fire in a building: IoT data generated by current IoT simulators
are hard-coded [14]. That is, the data generated do not realistically
models IoT data generated by real sensors. A more realistic approach
might be to generate sensor data based on a distribution or based on
the actual behavior of the sensor. Consider a fire-in-a-room scenario.
When there is a fire in the building/room, the temperature in the
room increases and the temperature sensor will report a higher
value than usual. The smoke sensor will detect the smoke in the
room and send the smoke alarm. The humidity in the room increases

Kaala: Scalable, End-to-End, 10T System Simulator

loT Edge
Device

) D message [DM,}

message

"

loT
Device

message

Figure 3: Sequence of data flow showing no differences in
data flow between real and simulated IoT devices

and the humidity sensor will be sending the updated humidity
value. Some sensors might malfunction, burn or lose connection
because of the fire. Thus, relying a few sensors’ data values will be
problematic. We might want to analyze data from some other IoT
devices (like a camera) to understand the prior and current situation
of the fire event to call an ambulance. IoT simulators ought to model
such scenarios. The inability of current IoT simulators to model
real-world IoT scenarios present Kaala with a unique opportunity.
We present more details of how Kaala achieves this in Sec. 4.2.

High-bandwidth data generation: IoT simulators ought to
support next-generation network technologies such as 5G. With
higher 5G throughput, next generation IoT applications should
seamlessly adapt to 5G. However, this is not the case. This is due to
the lack of tools (IoT Simulators) which foster the design, develop-
ment and deployment of 5G-capable applications both on the client
and server side. For instance, a video streaming service provider
like YouTube or Netflix have millions of users watching videos. The
throughput will depend on the quality of the video. Recently 8K
videos require significantly higher bandwidth (5G speeds) to play
a single frame compared to a 480p video quality. For example, a
video of "X’ minutes requires 119 MB for a 240p video, 1038 MB
for a 1080p video, and 7284 MB for an 8K video. Thus, prototyp-
ing 5G next generation IoT applications using an IoT simulator
that can support the massive data workloads seen in production
environment should be addressed. Current IoT simulators do not
support modelling thousands of IoT devices with large amount of
data. Kaala realises this challenge by simulating IP cameras that
supports 8K video streaming and is able to scale to hundreds (and
even thousands) as shown later in Sec. 6.

3 KAALA ARCHITECTURE

Fig. 2 shows the system design of Kaala. Kaala is able to integrate
real and simulated devices while leveraging vendor-specific SDKs
to connect them to real systems in the cloud. Next, we motivate
and detail each layer in Kaala’s architecture as shown in Fig. 4.

There are three main objective of Kaala. 1) Simulate various IoT
devices, including vendor-specific IoT devices and connect them
to particular vendor’s cloud IoT services. 2) Simulate realistic data
across all applicable devices to mimic real IoT service scenarios. 3)
Generate real high-throughput data.

Network layer: The network layer connects all the other layers.
It is a virtual network that models a real network. It contains core
network components, like a DHCP server, a DNS server, a switch

35

NET4us *22, August 22, 2022, Amsterdam, Netherlands

Application [IP Camera] { loT Sensors]
Layer
Storage Security |(Configuration
Layer [Vendor SDKSN Certificates][Files
Mininet Docker
Network Network Network
Layer
Real Network
Gateway loT Gateway
Layer
Cloud Amazon Azure loT Google loT
Layer Streams Cloud Cloud
Simulated Real

Figure 4: Kaala Layered Architecture

and a gateway. Each modelled physical device has a virtual IP ad-
dress. This layer provides the resources needed for the gateway to
connect to real systems using their domain names. Every instance
of this layer creates a separate, isolated virtual network that can
connect to real systems. Our evaluation results in Sec. 6 show quan-
titative statistics of network utilization for end-to-end IoT scenario
experiments.

Cloud layer: This layer is the real cloud IoT systems that Kaala
connects to. It authenticates, validates and accepts incoming connec-
tions and IoT data from the IoT gateway. The cloud layer provides
core entities for massive data transformation, data analysis and in-
terpretation. It provides data stream processing resources and cloud
services for machine learning related tasks, business integration
and user management. It is also responsible for notification and
archival data storage.

Gateway layer: The [oT gateway connects Kaala to real cloud
IoT systems. It runs vendor-provided SDKs, which contain the
RESTFul APIs needed to connect to the the cloud layer. It serves
as an MQTT broker (server) to IoT (Edge) devices and is a client
that connects to the cloud. The MQTT broker receives IoT data
from the network layer and translates the data into vendor-specific
data formats via their SDKs. It retrieves security contexts from the
storage layer, authenticates, validates and connects to the cloud
layer to forward the IoT data to the IoT cloud.

Storage layer: The storage layer is composed of different ven-
dor SDKs, security contexts, data storage and configuration files.
Cloud service providers support different SDKs, RESTFul APIs, data
formats, security mechanisms, certificates and keys. This layer is
responsible of contacting the service providers and obtaining the
updated certificates, keys and SDKs used by the gateway layer or
the application layer for authentication and validation.

NET4us "22, August 22, 2022, Amsterdam, Netherlands

Application layer: This is the layer responsible for simula-
tion configurations, parameters tuning, IoT device configuration,
network configuration and experiment scenarios. The purpose of
the application layer is to run application-specific logic. The ap-
plication layer provides standard IoT device functionality, such as
publishing messages but the architecture supports extension of IoT
device-specific logic by inheriting from the base IoT device logic.

4 KAALA DESIGN

In this section, we discuss Kaala’s design goals followed by a de-
tailed design to guide our implementation. The key design goals for
Kaala are four-fold: 1) connect simulated IoT devices to real cloud
IoT services, 2) provide extensibility of IoT device characteristics
for current and future IoT devices, 3) simulate real-time events
coordinated across multiple IoT devices and 4) generate realistic
data to support current and future technologies like 5G. In the next
sub sections, we will discuss how Kaala achieves these design goals.

4.1 Interacting with Real-World Systems

To support connection with both simulated and real networks, we
leverage Mininet [12] and docker [10]. Mininet has the capability
to create various types of virtual networks using different types
of switches and controllers, and each host will be running as a
process. Docker has the capability to create virtual networks and
each host will have its own container [10]. These Mininet and
docker virtual devices have IP addresses assigned to them and
therefore can connect to real physical networks. As discussed earlier
in Sec. 2.1, we enable interoperation with real cloud IoT systems
by integrating vendors’ SDKs [4]. Both the Mininet and docker
architecture supports running real application processes in the
respective host instances. Using this, the simulated applications
run the respective SDKs in the various hosts as processes. Since the
host application runs as a process, the host has access to all the files
stored in the machine in which the simulation framework is running.
As aresult, each host does not need to have the individual vendors’
SDKs installed and can reuse the SDK installed in the machine
in which the simulation framework is running. This architecture
is highly scalable when compared to the architecture proposed
by IoTNetSim in [14]. This is because IoTNetSim creates virtual
machine for each of the simulated devices. Moreover, in IoTNetSim
the SDKs need to be installed individually in each virtual machines.
We compare the scalability of Kaala with IoTNetSim in Sec. 6. The
key advantage of using Mininet is the ability to create a wide variety
of multiple-network architectures based on a simple configuration
[12]. Additionally, various network configurations with different
types of controllers and switches can also be simulated and tested
for IoT traffic.

Simulated IoT devices connect to the IoT Gateway and we cover
the implementation details in Sec. 5. Earlier in Sec. 2, we motivated
the need to simulate vendor-specific IoT devices. In our proposed
simulation framework design, both generic IoT devices and vendor-
specific IoT devices can be simulated. We isolated each of the IoT
devices with its own network resources. As a result, simulated
IoT device can express the characteristics of a real IoT device and
also run application specific code for the respective simulated IoT
device. The simulated vendor-specific IoT devices each run the

36

Udhaya Kumar Dayalan, et al.

respective vendor IoT device SDK to connect to the corresponding
vendor-specific IoT Gateway or IoT Clouds.

4.2 Scenario-based Event Simulation

The design of Kaala supports most of the real-time scenarios. We
have also discussed a couple of scenarios in Section 2.2. The basis of
scenario-based simulation is to coordinate one or more simulated
IoT devices to match values based on the scenarios at the same
duration range. Kaala supports simulation of one or more scenar-
ios either at the same time or in sequence. The fire-in-the-room
scenario is a built-in scenario in the Kaala simulation framework.
When there is a fire detected in the room, the smoke sensor detects
the smoke, the door lock opens automatically, the temperature in
the room increases, the humidity in the room increases as well and
the IP camera in the room captures the video. The list of affected
IoT devices and the respective values need to be configured in the
scenario configuration file, which gets loaded while running the
simulation framework.

Kaala supports the simulation of IP cameras and a default video
will be played when the IoT device is started. During the fire event,
a fire video can be specified in the configuration file and the sim-
ulated IP camera will start streaming the video with fire. By this
design, various scenarios can be simulated in Kaala. For example,
the scenario configuration feature in Kaala easily simulates the qual-
ity of video changing, based on the available network bandwidth
or based on time.

Next, in order to simulate a high-bandwidth scenario, we design
our simulated IP camera using a Real-Time Streaming Protocol
(RTSP) server [11]. The server will listen in a port and the client
will be listening in a different port. The producer of the video will
connect to the server port and the consumer of the video will be
connecting to the client port to play the video. Both the producer
and consumer can be designed to run in any host, so that the traffic
flows through the network. More about RTSP implementation and
evaluation is discussed in Section 5 and Section 6.3.

5 IMPLEMENTATION

We used Mininet [12] and the Docker framework [10] to simulate
the IoT devices. The simulator framework can simulate both generic
IoT devices and vendor-specific IoT device. Since we are leveraging
the Mininet framework, each IoT device runs in its own process
and gets dedicated network resources. We used the Node]JS ver-
sion of the Mininet framework to simulate the IoT devices. And
for the Docker version, each IoT device runs in its own container.
The generic IoT device uses the basic MQTT client and the vendor-
specific IoT device uses the respective vendor specific client SDK
to communicate to the IoT Gateway. The IoT Gateway informa-
tion, including the authentication details required to connect to
the vendor-specific IoT Gateway, are passed as parameters when
starting the respective vendor-specific simulated IoT devices, so
each device knows which IoT Gateway they need to connect, au-
thenticate and communicate with. Each simulated IoT device also
consists of a profile, which specifies the type of device it simulates
and the list of properties associated with the IoT device. Using this

Kaala: Scalable, End-to-End, 10T System Simulator

implementation, we were able to simulate vendor-specific IoT de-
vices and at the same time, provide dedicated network resources to
each of the IoT devices.

The simulation framework loads a configuration file during
startup. This configuration files includes the list of IoT devices
which needs to be simulated. And the support for new IoT devices
can be easily added to Kaala by just adding a profile for the newly
added IoT device. The new IoT device can either use the generic
application logic which sends data periodically based on the config-
uration which is discussed next or implement its own application
logic. Each IoT device entry in that list contains a list of properties
and these properties can be easily extended for new properties.
Some of the key properties include the name of the IoT device, the
profile (light, HVAC, smoke sensor, etc.) of the IoT device, the type
of device (generic or vendor-specific) and finally the list of proper-
ties and the respective time-interval to report to the IoT Gateway.
If the device type is vendor-specific, then the authentication infor-
mation including the certificates are passed as arguments through
the proposed design.

There is a another configuration file, called the scenario con-
figuration file. The main purpose of this configuration file is to
specify when the scenario needs to be executed, the list of IoT de-
vices properties which need to be included in the scenario and the
values of the properties of those IoT devices during the scenario.
The default values need to be specified at the end of the scenario-
based configuration file, in order to complete the scenario. After a
scenario finishes executing, the next scenario in the configuration
file is executed or the same scenario is executed in a loop until the
simulation is stopped.

As discussed in Section 4.2, there are two main components in
simulating an IP camera, the producer and the consumer. The video
that needs to be streamed in the IP camera needs to be configured
in the simulation configuration file, along with the period of the
stream. Based on the configuration, Kaala will connect to the RTSP
server to send video data. The producer keeps producing the video
to the RTSP server by connecting to the local RTSP server port and
the consumers can consume the video by connecting to the client
port of the RTSP server of the respective IP camera IoT devices.

The main advantage of Kaala over IoTNetSim is that [oTNetSim
creates virtual images for each IoT device, but Kaala uses processes
for each IoT device. We tried to perform additional performance
evaluation with IoTNetSim, but due to the design of IoTNetSim,
we were not able to control the periodic interval of the simulated
sensors within the IoTNetSim framework.

6 EVALUATIONS

In this section, we seek to understand the scalability and perfor-
mance of Kaala. We connect simulated IoT devices to a real networks
(we use Amazon AWS as case study) and finally evaluate a scenario
based simulation.

6.1 Scalability and Performance

Since the simulation are usually run in a machine by the developer
or tester, we want to understand the scalability and performance
of running Kaala in a regular machine. For the experimental setup,
we used a Linux Virtual Machine (VM) which was allocated 4GB

37

NET4us *22, August 22, 2022, Amsterdam, Netherlands

/\ Kaala CPU Usage

\p——tr —_

percent

—=— 10 Devices
—=— 100 Devices

Kaala Memory Usage

percent

10 15 20
Time [Seconds]

Figure 5: Kaala Performance Evaluation - Mininet

percent

—=— 10 devices

€
§ Kaala Memory Usage . 100 devices
[7]
2 50 A
0 5 10 15 20

Time [Seconds]

Figure 6: Kaala Performance Evaluation - Docker

memory, 2 processors and 20GB for storage. The VM was running
Ubuntu. To understand the memory consumption and scalability
capability of Kaala, we conducted two experiments; In the first and
second experiment, we simulated 10 and 100 IoT devices respec-
tively. The simulated IoT devices were a combination of temperature
sensor, smoke sensor, humidity sensor, flame sensor and motion
sensor. Each of these sensors publish their data based on their IoT
device profile every 15 seconds. The data in Fig. 5 and Fig. 6 shows
shows that as the number of sensors increases, the processor and
memory usage increases significantly. Kaala is not just a simulator,
it is an emulator as well. Each sensor runs its application logic in
an individual process. So the processor and memory usage are ex-
pected to increase as the number of devices scale up. This is because
as the number of IoT devices increases, more processes are created.

Since Kaala uses Mininet and the Docker framework to simulate
10T devices, for each IoT device, Mininet and the Docker framework
create a network interface. So as the number of IoT devices increases,
there is time taken to configure a new network interface in the host
machine, get a new IP address and bring the interface up. The initial
spike in both the memory and processor usage shows that both
Mininet and the Docker framework consumes both memory and
processor to create and setup the virtual network. An additional
reason for the spike in resource usage is the spawning of processes
or containers for each of the simulated IoT devices.

6.2 Interacting with Real Systems

For this experiment setup, we first created a user profile in the AWS
IoT [2], and then configured an IoT device along with the necessary
security certificates that are required to authenticate and connect

NET4us "22, August 22, 2022, Amsterdam, Netherlands

Features IoTNetSim | Kaala
Vendor-Specific IoT Devices | No Yes
MOQTT Protocol Broker No Yes
Cloud Layer Yes No
Semi-Real IoT Devices No Yes
5G Capable Scenarios No Yes

Table 1: Comparison of Kaala with IoTNetSim

to the AWS IoT Cloud. The security certificates are downloaded
in the host machine in which Kaala is running. Next, in the Kaala
configuration, we specify that a vendor-specific IoT device needs
to be simulated; the path to the downloaded security certificates
are configured as well. These steps can be repeated for any number
of vendor-specific devices. The same steps can also be followed for
different vendors, like Microsoft Azure or Google 10T clouds, as
well. Then, we start the simulation framework. Based on the loaded
configuration, Kaala knows that a vendor-specific IoT device needs
to be simulated and the application in the simulated devices will
try to connect to the IoT gateway or IoT cloud using the provided
security contexts. Once connected, the simulated IoT device will
start publishing the data. Particularly, in this experiment, all the
data is published to AWS IoT cloud.

6.3 Scenario-based Event Simulation

In this section, we assess the scenario-based event simulation in
Kaala. First, for fire-in-the-room scenario, the necessary IoT devices
were configured via the Kaala configuration file. This configuration
file is also a pre-configured profile in Kaala. Initially, all the IoT
devices will be publishing respective data to the IoT gateway or IoT
cloud and the data will be related to normal operation in a room. In
the scenario configuration file, the time to start the scenario based
simulation will be specified. At that time, each IoT device property
configured in the scenario configuration file will be configured
with the value specified in the scenario configuration file. And, the
values gets changed synchronously across all these IoT devices. The
flame sensor will report ’true’ stating that a flame has been detected.
The temperature sensor shows a significant increase in the current
temperature. Also, a video in which fire is shown is played exactly
at the same time. Additionally, there can be two fire sub-scenarios.
The first one is to make the motion sensor detect a movement in
the room, while the second one has the motion sensor not sensing
any movement or person in the room. This will help to validate
scenarios like what happens when a person is in the room during
the fire event and what happens when there is no person inside the
room when the fire event occurs.

Next, sending high-bandwidth data was validated. As discussed
in section 4.2, Kaala have an RTSP server running when simulating
an IP camera IoT device. The server and client port of the RTSP
server are configurable in the IP camera IoT device profile. As of
now, the simulated IP camera IoT device can run server and client
on the same port number. This can be a potential future work to
support different ports for different IP camera IoT devices. An 8K
video is sent to the simulated IP camera by connecting to the server
port of the RTSP server. And, the consumer consumes the video by
connecting to the client port of the RTSP server which is running

38

Udhaya Kumar Dayalan, et al.

in the simulated IP camera IoT device. Both the producer and con-
sumer were run in a host other than the IP camera IoT device, so
that the traffic is flowed in the network. The video being played by
the producer can be completely controller by the application using
the simulator configuration file. Additionally, the timing of different
scenarios can be controlled and configured by the scenario-based
configuration file. We also simulated a scenario in which the quality
of video changes over time. For example, for the first 30 minutes,
the producer was configured to produce 8K video and then for the
next 30 minutes a 4K video was produced. This proves that Kaala is
capable of simulating videos of different qualities to test different
scenarios of streaming applications.

7 CONCLUSIONS

We have presented Kaala — a modelling, simulation and emulation
platform that are capable of creating IoT devices of various types.
Using our proposed simulation framework, we were able to simulate
multi-vendor specific IoT devices in a single simulation framework.
We also simulated real-time events like fire in a room/building
scenario and evaluated how this work can be extended for other
real-time scenarios. We were able to simulate devices which can
generate large amount of data to verify and validate 5G technology.

ACKNOWLEDGMENTS

This research was in part supported by NSF under grants CNS-
1814322, CNS-1831140, CNS-1836772, CNS-1901103, CNS-2106771
and CNS-212848.

REFERENCES

[1] AWS. 2018. Run Lambda functions on the AWS IoT Greengrass core - AWS IoT
Greengrass. https://docs.aws.amazon.com/greengrass/latest/developerguide/
lambda-functions.html

[2] AWS. 2020. aws/aws-iot-device-sdk-embedded-C. https://github.com/aws/aws-
iot-device-sdk-embedded-C

[3] AWS. 2022. IoT Device Simulator.
implementations/iot-device-simulator/

[4] Microsoft Azure. 2020. Azure/azure-iot-sdks. https://github.com/Azure/azure-
iot-sdks

[5] Maxim Chernyshev, Zubair Baig, Oladayo Bello, and Sherali Zeadally. 2017.
Internet of things (iot): Research, simulators, and testbeds. IEEE Internet of Things
Journal 5, 3 (2017), 1637-1647.

[6] CHIP. 2022. Project Connected Home over IP. https://www.connectedhomeip.
com/

[7] Google Cloud. 2019. Overview of Internet of Things | Solutions | Google Cloud.
https://cloud.google.com/solutions/iot-overview

[8] Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J. Salo, and
Zhi-Li Zhang. 2021. ECIoT: Case for an Edge-Centric IoT Gateway. In Proceedings
of the 22nd International Workshop on Mobile Computing Systems and Applications
(Virtual, United Kingdom) (HotMobile °21). Association for Computing Machinery,
New York, NY, USA, 154-156. https://doi.org/10.1145/3446382.3448667

[9] Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J. Salo, and

Zhi-Li Zhang. 2021. VeerEdge: Towards an Edge-Centric IoT Gateway. In 2021

IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing

(CCGrid). 690—695.

Docker. 2022. Get Started with Docker. https://www.docker.com/get-started

IETF. 2022. Real Time Streaming Protocol (RTSP). https://tools.ietf.org/html/

rfc2326

Mininet. 2022. Mininet - An Instant Virtual Network on your Laptop (or other

PC). http://mininet.org/overview/

UNIFY-IoT Project. 2016. Deliverable D03.01, Report on IoT plat-

form activities. https://docbox.etsi.org/SmartM2M/Open/AIOTI/

IoTPlatformsAnalysisTolmprove/D03_01_WP03_H2020_UNIFY-IoT_Final.pdf

Maria Salama, Yehia Elkhatib, and Gordon Blair. 2019. IoTNetSim: A modelling

and simulation platform for end-to-end IoT services and networking. In Pro-

ceedings of the 12th IEEE/ACM International Conference on Utility and Cloud

Computing. 251-261.

https://aws.amazon.com/solutions/

—
- o

