
IEEE Network • May/June 2023240 0890-8044/23/$25.00 © 2023 IEEE

AbstrAct
The IoT world is evolving with the latest tech-

nology trends, like edge computing, augment-
ed & virtual reality, machine learning, robotics,
and 5G. With the digital transformation happen-
ing in Industry 4.0, many industries are moving
toward private 5G networks. There are massive
number (hundreds to thousands) of IoT devic-
es in a single factory depending on the scale of
the industry and these factories consists of critical
IoT devices, like fire or gas sensors which need
to operate reliably with less latency. To efficient-
ly realize the capabilities, such as ultra reliable
low latency communications (URLLC), enhanced
mobile broadband (eMBB), and massive machine-
type communications (mMTC) offered by 5G, the
next generation IoT devices/applications need
a paradigm shift in their design and need to be
evaluated under simulation using 5G networks
before getting deployed in the real-world. How-
ever, many IoT simulators run in isolation and do
not interface with real-world IoT cloud systems
or support 5G networks. This isolation makes it
difficult to design, develop and evaluate IoT appli-
cations for industrial automation systems and for
experiments to fully replicate the diversity that
exists in end-to-end, real-world systems using 5G
networks. Kaala 2.0 is the first scalable, hybrid,
end-to-end IoT and NextG system simulator that
can integrate with real-world IoT cloud services
through simulated or real-world 5G networks.
Kaala 2.0 is intended to bridge the gap between
IoT simulation experiments and the real world
using 5G networks. The simulator can interact
with cloud IoT services, such as those offered by
Amazon, Microsoft, and Google. Depending on
the configuration, Kaala 2.0 supports simulation of
User Equipment (UE), 5G Radio Access Network
(RAN) and 5G Core and at the same time support
real-world User Equipment (UE), 5G Radio Access
Network (RAN) and 5G Core. Kaala 2.0 can simu-
late many diverse IoT devices to evaluate mMTC,
simulate events that may simultaneously affect
several sensors to evaluate URLLC and finally sim-
ulate large amount of data to evaluate eMBB.

IntroductIon
The IoT world is evolving with the latest technol-
ogy trends like edge computing, augmented &
virtual reality, machine learning, robotics and 5G.
But still there is less business productivity due to
the slower technical adoption in the industrial

automation system. There is a tremendous need
for autonomous networks in the manufacturing
industry to increase productivity and allow com-
munication between people, devices, and sen-
sors. And there are massive number (hundreds
to thousands) of IoT devices in a single factory
depending on the scale of the industry. These fac-
tories consist of critical IoT devices like fire or gas
sensors which need to operate reliably with less
latency. But the existing wired and/or wireless
networks are struggling to fulfil the computation-
al and resources for operations demand of the
emerging technologies. To address these needs
of the industries with digital transformation hap-
pening in Industry 4.0, the evolution of private
5G and 5G standards opens bigger opportunities.
The network architecture of 5G is designed for 3
key services in mind: mMTC, eMBB, and URLLC.
The 5G promises and new capabilities trigger an
important question: can 5G help manufacturing
industry to catch-up with the technology changes
shown in Fig. 1?

Cloud IoT service vendors, such as AWS [2],
Azure [3], and Google [4], all aim to build their
own IoT ecosystems, which currently do not
interoperate with each other. According to the
UNIFY IoT project, more than 360 IoT companies
exist today [5]. While there are industry-led efforts
to ensure interoperability between cloud IoT ser-
vices, non-interoperable cloud IoT services are
likely to remain the rule.

MotIvAtIons: need And LIMItAtIons of
sIMuLAtIon frAMeworks

Expensive and Cumbersome Real Setup: Proto-
typing, testing, and evaluating new IoT devices
and systems can be expensive. Beyond the cost
of the devices themselves, setting up, configuring,
and maintaining a diverse collection of physical
IoT devices can quickly become time-consum-
ing, cumbersome, unwieldy, and expensive. As
a result, simulators are often used to test and
evaluate new product ideas and designs early in
the development process. Since cloud services
have become a critical component of many IoT
systems, it is beneficial that these simulations be
able to evaluate end-to-end systems, from the IoT
devices to the IoT cloud services.

Vendor Locked: However, simulating end-to-
end IoT systems as shown in Fig. 2 is complicat-
ed by the vendor specific nature of these cloud
IoT services. Each vendor requires IoT devices to

Kaala 2.0: Scalable IoT/NextG System Simulator
Udhaya Kumar Dayalan, Timothy J. Salo, Rostand A. K. Fezeu, and Zhi-Li Zhang

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.002.2200498

Udhaya Kumar Dayalan is with Trane Technologies, USA, and University of Minnesota, USA;
Timothy J. Salo, Rostand A.K. Fezeu, and Zhi-Li Zhang are with the University of Minnesota, USA.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2023 241

implement a different set of protocols to authen-
ticate and collect data from these devices. As a
result, IoT devices are often locked into one cloud
IoT service provider [6, 7].

Limited Capabilities of Existing Simulation
Frameworks: An alternative to waiting until phys-
ical devices have been developed and construct-
ed, is to use IoT simulators to test and evaluate
prospective IoT devices, systems, and designs. If
these simulators and experiments are designed
properly, simulation can significantly reduce the
gap between proof-of- concept (PoC) implemen-
tations and real-world deployments [8]. Unfor-
tunately, existing IoT simulators are limited in
their capabilities and scopes. Many simulators
are designed to run on a single laptop, desktop,
or a server, and are therefore poorly positioned
for large-scale simulations that require signifi-
cant computational power. Most of simulators
fail to capture the large variety and diversity of
IoT devices that exist today. For example, many
are tailored to simulating only small sensors with
low bandwidth requirements, ignoring a vari-
ety of IoT devices (e.g., surveillance cameras
and autonomous vehicles) that consume large
amounts of network bandwidth and require
real-time cloud connectivity. Perhaps more
importantly, existing IoT simulators operate in
isolation: they interface with only a limited num-
ber of types of IoT devices and cannot be inte-
grated with existing cloud services.

In short, existing IoT simulators cannot be used
to effectively test and evaluate prototype IoT sys-
tems, especially those that require computational-
ly intensive subsystems, such as machine learning
algorithms, Cloud IoT services, or IoT control
mechanisms running on edge computing facilities.
Chernyshev et al. [8] in a recent survey highlight-
ed that an all-in-one simulator capable of support-
ing an end-to-end IoT service with 5G networks
has yet to be developed. New simulation tools
and test-and-evaluation environments are sore-
ly needed for unit testing and for the systematic
evaluation of intelligent IoT services that include
diverse, integrated devices, edge computing and
cloud computing components.

the scope of thIs ArtIcLe
We present Kaala 2.0—a modeling, simulation,
and emulation platform that can specify IoT devic-
es of various types, from low-powered sensors
to smart IoT devices requiring high bandwidth,
such as IoT devices that anticipate emerging 5G
networks. Kaala 2.0 is an extension of Kaala [9]
and simulates UE, RAN and 5G Core at the same
time connect to real-work UE, RAN, and 5G Core.
In addition to simulating IoT devices, an import-
ant feature of Kaala 2.0 is its ability to interface
and connect with real-world cloud IoT services in
an integrated fashion. The initial version of Kaala
2.0 can use Amazon AWS [2], Microsoft Azure
[3] and Google [4] IoT cloud services. The main
design goal of Kaala 2.0 is to help researchers and
practitioners to prototype various IoT scenarios,
including those that use high bandwidth 5G ser-
vices, generate massive amounts of data, and to
help bridge the gap that exists between simulators
and real-world system. The major contributions
are summarized below:

FIGURE 1. Gaps in manufacturing industry and trends [1].

FIGURE 2. IoT (Edge) Devices, IoT Gateway, and IoT Cloud.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2023242

• We present Kaala 2.0: An IoT modeling and
simulation platform that can specify IoT
devices of various types to communicate
with real-world cloud IoT systems, like AWS,
Amazon, Google, and many other IoT Cloud
platforms as case studies through simulated
or real-world 5G networks.

• Kaala 2.0 is a scenario based IoT simulator
capable of mimicking various IoT scenarios
such as “fire in a room or building” to eval-
uate URLLC service of 5G and “5G network
capable data generation (including 4K/8K
video IP cameras)” scenarios.

• Kaala 2.0 can simulate massive number of
IoT devices to evaluate mMTC service of
5G.

• Kaala 2.0 can generate massive amounts of
IoT data for prototyping data intensive IoT
applications to evaluate eMBB service of 5G.
The rest of the article is organized as follows:

We motivate the need for new simulation frame-
work using case studies. And define the multi-lay-
ered paradigm of Kaala 2.0. The design and
implementation of Kaala 2.0 are presented below,
respectively. Kaala 2.0 is simulated and evaluated
with a conclusion.

cAse studIes:
need for A better sIMuLAtIon frAMework

We use three case studies to argue the need for
a better simulation framework, while discussing
their challenges.

AbILIty to InterAct wIth reAL systeMs usIng 5g networks
Emergent IoT applications are extremely complex
and operate in a very diverse IoT world. These
are not just the smart speakers, smart thermostats,
or smart door locks in our homes, but also sen-
sors used in domains like in the oil, gas, noise, and
automobile industries. These applications support
different systems connected through IoT using dif-

ferent net- works. There are no differences in data
flow between real and simulated IoT devices. And
there are less differences when using real and sim-
ulated networks. Researchers use simulators to
study, prototype, test, and evaluate new IoT and
5G concepts. However, these simulators fail to
reflect the complexity that exists in real IoT envi-
ronments. For example, current IoT simulators do
not simulate 5G networks. The IoT simulator pro-
vided by AWS [10] can only simulate one type of
IoT device. It simulates hard-coded IoT messages
and does not simulate the network characteristics
of 5G networks along with massive IoT data. To
the best of our knowledge, current IoT simulators
operate in isolation and do not interact with real
cloud IoT system or support 5G networks, failing
to reflect the complexity present in the IoT world.
Kaala 2.0 is intended to remedy these deficien-
cies. Kaala 2.0 simulates several vendors specific
IoT devices, (including those from AWS, Google,
and Azure), and can connect to and communi-
cate with real-world cloud IoT systems provided
by these vendors using 5G networks. Kaala 2.0
connects simulated IoT devices with real servers
(within the complex IoT world) using 5G net-
works, so that services provided by 5G can be
used, validated, and verified. For instance, Kaala
2.0 connects simulated IP cameras, temperature
sensors, humidity sensors, and flame sensors to
the Amazon’s Kinetic video streams using simu-
lated or real 5G networks and builds logic around
these sensors to simulate a fire event.

scenArIo-bAsed dAtA/event sIMuLAtIon
We use a fire-in-a-building event to make the case
for the need of a scenario-based data generation
and 5G service. IoT data generated by IoT simula-
tors are hard-coded [11]. A more realistic approach
might be to generate sensor data based on a dis-
tribution or based on the actual behavior of the
sensor. Consider a fire-in-a-room scenario. When
there is a fire in the room, the temperature in the
room increases and the temperature sensor will
report a higher value than usual. The smoke sensor
will detect the smoke in the room and send the
smoke alarm. The humidity in the room increases
and the humidity sensor will be sending the updat-
ed humidity value. Some sensors might malfunc-
tion, burn, or lose connection because of the fire.
Thus, relying on a few sensors’ data values will be
problematic. And the critical data need to be priori-
tized for cloud analysis within the expected latency
of each application to realize the URLLC service
offered by 5G even when massive IoT devices are
connected to the 5G network.

hIgh-bAndwIdth dAtA generAtIon
IoT simulators ought to support next-generation
network technologies such as 5G. With higher
5G throughput, next generation IoT applications
should seamlessly adapt to 5G. However, this is
not the case due to lack of tools which foster the
design, development, and deployment of 5G-ca-
pable applications both on the client and serv-
er side. For instance, a video streaming service
provider like YouTube or Netflix have millions
of users watching videos. The throughput will
depend on the quality of the video. Recently 8K
videos require significantly higher bandwidth to
play a single frame compared to a 480p video

FIGURE 3. Kaala 2.0 layered architecture.

Application
Layer

Storage
Layer

Network
Layer

Mininet
Network

Real Network

IP Camera

Security
CertificatesVendor SDKs

Cloud
Layer

Amazon
Streams

IoT Sensors

Gateway
Layer

IoT Gateway

Azure IoT
Cloud

Google IoT
Cloud

Simulated Real

Configuration
Files

Docker
Network

RAN
Layer

RAN

5G Core
Layer

5G Core

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2023 243

quality. For example, a video of ’X’ minutes
requires 119 MB for a 240p video, 1038 MB for
a 1080p video, and 7284 MB for an 8K video.
Thus, prototyping 5G next generation IoT appli-
cations using an IoT simulator that can support
the massive data workloads seen in production
environment should be addressed. Current IoT
simulators do not support modeling thousands of
IoT devices with large amount of data. Kaala 2.0
realizes this challenge by simulating IP cameras
that supports 8K video streaming and can scale to
hundreds (and even thousands) as shown later. In
addition, each IoT edge device can be simulated
as a UE to communicate to the NextG network.

defInIng kAALA 2.0: A MuLtI-LAyered pArAdIgM
Kaala 2.0 is able to integrate real and simulated
devices while leveraging vendor specific SDKs to
connect them to real systems in the cloud. Next,
we motivate and detail each layer in Kaala 2.0’s
architecture as shown in Fig. 3.

Key Objectives: There are three main objec-
tives of Kaala 2.0:
• Simulate various IoT devices, including ven-

dor specific IoT devices and connect them
to vendor’s cloud IoT services.

• Simulate realistic data across all applicable
devices to mimic real IoT service scenarios.

• Generate high-throughput data.
Cloud Layer: This layer is the real cloud IoT

systems that Kaala 2.0 connects to. It authenti-
cates, validates, and accepts incoming connec-
tions and IoT data from the IoT gateway. The
cloud layer provides core entities for massive data
transformation, data analysis and interpretation.
It provides data stream processing resources and
cloud services for machine learning related tasks,
business integration and user management.

5G Core Layer: This layer is the simulated 5G
core to which each of the simulated RAN con-
nects to. On the other end, the 5G Core con-
nects to the internet. This can be replaced with
real-world 5G core as well in which the RAN also
should be real-world 5G RAN and the UE need to
have proper service to the real-world 5G provider.

RAN Layer: This layer is the simulated RAN to
which the simulated UEs connect to. There can
be more than one RAN and each RAN connect
to one 5G core. This can be replaced with real-
world 5G RAN which connects to real-world 5G
core as well in which the UE need to have proper
service to the real-world 5G provider.

Gateway Layer: The IoT gateway connects
Kaala 2.0 to real cloud IoT systems. It runs ven-
dor-provided SDKs, which contain the RESTFul
APIs needed to connect to the cloud layer. It
serves as an MQTT broker (server) to IoT (Edge)
devices and is a client that connects to the cloud.
The MQTT broker receives IoT data from the net-
work layer and translates the data into vendor
specific data formats via their SDKs.

Network Layer: The network layer connects all
the other layers. It is a virtual network that models
a real network. This layer provides the resources
needed for the gateway to connect to real systems.
Every instance of this layer creates a separate, isolat-
ed virtual network that can connect to real systems.

Storage Layer: The storage layer is composed
of different vendor SDKs, security contexts, data
storage, and configuration files. Cloud service

providers support different SDKs, RESTFul APIs,
data formats, security mechanisms, certificates,
and keys. This layer is responsible of contacting
the service providers and obtaining the updated
certificates, keys, and SDKs used by the gateway
layer or the application layer for authentication
and validation.

Application Layer: This is the layer responsible
for simulation configurations, parameters tuning,
IoT device configuration, network configuration,
and experiment scenarios. The purpose of the
application layer is to run application specific logic.

desIgnIng kAALA 2.0:
enhAnced cApAbILItIes wIth nextg support

We discuss Kaala 2.0’s design goals followed by a
detailed design to guide our implementation.

desIgn goALs
The key design goals for Kaala 2.0 are four-fold:
• Connect simulated IoT devices to real cloud

IoT services using 5G networks.
• Provide extensibility of IoT device character-

istics for IoT devices.
• Simulate real-time events coordinated across

multiple IoT devices.
• Generate realistic data to support current

and future technologies like 5G.
Below, we will discuss how Kaala 2.0 achieves
these design goals.

scenArIo-bAsed event sIMuLAtIon
The design of Kaala 2.0 supports most of the real-
time scenarios. The basis of scenario-based simu-
lation is to coordinate one or more simulated IoT
devices to match values based on the scenarios at
the same duration range. Kaala 2.0 supports simu-
lation of one or more scenarios either at the same
time or in sequence. The fire-in-the-room scenario
is a built-in scenario in the Kaala 2.0 simulation
framework. When there is a fire detected in the
room, the smoke sensor detects the smoke, the
door lock opens automatically, the temperature
in the room increases, the humidity in the room
increases as well and the IP camera in the room
captures the video.

hIgh-bAndwIdth dAtA sIMuLAtIon
Next, to simulate a high-bandwidth scenario, we
design our simulated IP camera using a Real-Time
Streaming Protocol (RTSP) server [12] and client.
The server will listen in a port and the client will
be listening in a different port. The producer of
the video will be connecting to the server port
and the consumer of the video will be connect-
ing to the client port to play the video. Both the
producer and consumer can be designed to run
in any host, so that the traffic flows through the
network. More about RTSP implementation and
evaluation are discussed below.

nextg network support
To support NextG simulation, Kaala 2.0 is
designed to support regular network connection

Kaala 2.0 is able to integrate real and simulated devices while leveraging vendor specific SDKs to
connect them to real systems in the cloud.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2023244

to the cloud as well as connecting to the cloud
through RAN and 5G Core. In case of NextG,
each IoT device will connect to the 5G network
as a UE. The design supports connecting the IoT
gateway to the RAN as a UE or each IoT device
as a UE to the RAN. If each IoT device acts as a
UE, then those devices won’t be able to integrate
with a IoT gateway, it needs to connect to the
IoT cloud through the 5G Core. Once the UE is
connected to the 5G Core, then it can start send-
ing the IoT related data to the IoT cloud through
the RAN and 5G Core. Each IoT device will have
an option to be a regular IoT device or NextG
capable device. Kaala 2.0 supports both simulat-
ed and real-world UE’s. The real-world UE’s can
connect only to real-world RAN and the simulated
UE’s can connect only to simulated RAN due to
the radio conditions. Because in simulations, the
radio conditions are simulated as well. The real-
world RAN can connect to both simulated and
real-world 5G core based on the system setup.

InterActIng wIth reAL-worLd systeMs usIng 5g networks
To support connection with both simulated and
real networks including 5G networks, we lever-
age Mininet [13] and docker [14]. Mininet has
the capability to create various types of virtual
networks using different types of switches and
controllers, and each host will be running as a
process. Docker has the capability to create vir-
tual networks and each host will have its own
container [14]. These Mininet and docker virtual
devices have IP addresses assigned to them and
therefore can connect to real physical networks.
Both the Mininet and docker architecture sup-
ports running real application processes in the
respective host instances. Using this, the simulat-
ed applications run the respective SDKs in the
various hosts as processes. This architecture is
highly scalable when compared (Table 1) to the
architecture proposed by IoTNetSim in [11]. This
is because IoTNetSim creates virtual machine for
each simulated device. Moreover, in IoTNetSim
the SDKs need to be installed individually in each
virtual machine.

reALIzIng kAALA 2.0:
IMpLeMentAtIon of the frAMework

key enAbLIng technoLogIes
We used Mininet [13] and the Docker frame-
work [14] to simulate the IoT devices. The sim-
ulator framework can simulate both generic IoT

devices and vendor specific IoT device. Since
we are leveraging the Mininet framework, each
IoT device runs in its own process and gets ded-
icated network resources. We used the NodeJS
version of the Mininet framework to simulate the
IoT devices. And for the Docker version, each
IoT device runs in its own container. The generic
IoT device uses the basic MQTT client and the
vendor specific IoT device uses the respective
vendor specific client SDK to communicate to
the IoT Gateway. The IoT Gateway information,
including the authentication details required to
connect to the vendor specific IoT Gateway, are
passed as parameters when starting the respec-
tive vendor- specific simulated IoT devices, so
each device knows which IoT Gateway they
need to connect, authenticate, and communi-
cate with. Each simulated IoT device also consists
of a profile, which specifies the type of device it
simulates, and the list of properties associated
with the IoT device.

confIgurIng the end-to-end systeM
The simulation framework loads a configuration
file during startup. This configuration file includes
the list of IoT devices which needs to be simulat-
ed. The support for new IoT devices can be easily
added to Kaala 2.0 by just adding a profile for
the newly added IoT device. The new IoT device
can either use the generic application logic which
sends data periodically based on the configura-
tion which is discussed next or implement its own
application logic. Each IoT device entry in that list
contains a list of properties and these properties
can be easily extended for new properties. Some
of the key properties include the name of the IoT
device, the profile (light, HVAC, smoke sensor,
etc.) of the IoT device, the type of device (generic
or vendor specific) and finally the list of properties
and the respective time-interval to report to the
IoT Gateway.

scenArIo-bAsed event setup
There is another configuration file called the
scenario configuration file. The main purpose
of this configuration file is to specify when the
scenario needs to be executed, the list of IoT
devices properties which need to be included
in the scenario and the values of the properties
of those IoT devices during the scenario. The
default values need to be specified at the end
of the scenario-based configuration file, to com-
plete the scenario.

hIgh-bAndwIdth dAtA generAtIon usIng
vIdeo streAMIng

As discussed above, there are two main compo-
nents in simulating an IP camera: the producer,
and the consumer. The video that needs to be
streamed in the IP camera needs to be configured
in the simulation configuration file, along with the
period of the stream. Based on the configuration,
Kaala 2.0 will connect to the RTSP server to send
video data. The producer keeps producing the
video to the RTSP server by connecting to the
local RTSP server port and the consumers can
consume the video by connecting to the client
port of the RTSP server of the respective IP cam-
era IoT devices.

TABLE 1. Comparison of Kaala 2.0 With IoTNetSim.

Features IoTNetSim Kaala 2.0

Vendor specific IoT devices No Yes

MQTT protocol broker No Yes

Cloud layer Yes No

Semi-real IoT devices No Yes

5G capable scenarios No Yes

5G RAN No Yes

5G core No Yes

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2023 245

nextg IntegrAtIon

We leveraged Open Air Interface’s (OAI) [15]
UE, RAN and 5G Core modules for Kaala 2.0.
Each of the IoT device will run OAI’s UE module.
To simulate 5G networks, the 5G Core and RAN
are started in sequence. Then the IoT devices are
deployed and the UE module in the IoT device
connects to the configured RAN accordingly. If a
IoT device is configured to be a NextG capable,
then it will act as a UE and try to connect to the
5G RAN else it will try to connect to the cloud
using regular IP network.

sIMuLAtIon And perforMAnce evALuAtIons
We seek to understand the capabilities, scalabil-
ity, and performance of Kaala 2.0. We connect
simulated IoT devices to a real network (we use
Amazon AWS as case study) using 5G networks
and finally evaluate a scenario-based simulation
using IP networks.

systeM setup
For the experimental setup, we used a Linux Virtu-
al Machine (VM) which was allocated 4GB mem-
ory, two processors and 20GB for storage. The
VM was running Ubuntu.

scenArIo-bAsed event sIMuLAtIon
We assess the scenario- based event simulation in
Kaala 2.0. First, for fire-in-the-room scenario, the
necessary IoT devices were configured via the
Kaala 2.0 configuration file. This configuration file
is also a pre-configured profile in Kaala 2.0. Initial-
ly, all the IoT devices will be publishing respective
data to the IoT gateway or IoT cloud and the data
will be related to normal operation in a room. In
the scenario configuration file, the time to start
the scenario-based simulation will be specified. At
that time, each IoT device property configured in
the scenario configuration file will be configured
with the value specified in the scenario configu-
ration file. And the values get changed synchro-
nously across all these IoT devices. The flame
sensor will report ’true’ stating that a flame has
been detected. The temperature sensor shows a
significant increase in the current temperature.
Also, a video in which fire is shown is played at
the same time.

hIgh-bAndwIdth dAtA generAtIon
Kaala 2.0 have an RTSP server running when sim-
ulating an IP camera IoT device. The server and
client port of the RTSP server are configurable in
the IP camera IoT device profile. As of now, the
simulated IP camera IoT device can run server
and client on the same port number. This can be
a potential future work to support different ports
for different IP camera IoT devices. An 8K video is
sent to the simulated IP camera by connecting to
the server port of the RTSP server. And the con-
sumer consumes the video by connecting to the
client port of the RTSP server which is running
in the simulated IP camera IoT device. Both the
producer and consumer were run in a host other
than the IP camera IoT device, so that the traffic
can be flowed in the network. The video being
played by the producer can be completely con-
troller by the application using the simulator con-
figuration file. Additionally, the timing of different

scenarios can be controlled and configured by
the scenario-based configuration file.

nextg sIMuLAtIon
During the startup, an instance of 5G Core and
RAN are started and the RAN is connected to
the 5G Core. In the configuration file, if the IoT
device is configured as NextG capable, then the
IoT device acts as a UE and successfully connect-
ed to the configured RAN. Once when the UE
is successfully attached to the RAN, the IoT data
is sent through the RAN and 5G Core to the IoT
cloud. Support for multiple UE’s connecting to
the 5G core was evaluated and the data flow
from the UE to the IoT cloud through the RAN
and 5G Core was evaluated as well.

InterActIng wIth reAL systeMs usIng 5g networks
For this experiment setup, we first created a user
profile in the AWS IoT, and then configured an
IoT device along with the necessary security cer-
tificates that are required to authenticate and
connect to the AWS IoT Cloud. The security cer-
tificates are downloaded in the host machine in
which Kaala 2.0 is running. Next, in the Kaala 2.0
configuration, we specify that a vendor specific
IoT device needs to be simulated; the path to the
downloaded security certificates is configured as
well. These steps can be repeated for any number
of vendor- specific devices. The same steps can
also be followed for different vendors, like Mic-
rosoft Azure or Google IoT clouds, as well. Then,
we start the simulation framework. Based on the
loaded configuration, Kaala 2.0 knows that a ven-
dor specific IoT device needs to be simulated and
the application in the simulated devices will try
to connect to the IoT gateway or IoT cloud using
the provided security contexts using the above
mentioned 5G network. Once connected, the
simulated IoT device will start publishing the data.
Particularly, in this experiment, all the data is pub-
lished to AWS IoT cloud.

scALAbILIty And perforMAnce
To understand the memory consumption and
scalability of Kaala 2.0, we conducted two exper-
iments; In the first and second experiment, we
simulated 10 and 100 IoT devices respectively.
The simulated IoT devices were a combination
of temperature sensor, smoke sensor, humidity
sensor, flame sensor and motion sensor. Each of
these sensors publish their data based on their
IoT device profile every 15 seconds. The data in
Figs. 4 and 5 shows that as the number of sen-
sors increases, the processor and memory usage
increase significantly. Kaala 2.0 is not just a sim-
ulator; it is an emulator as well. Each sensor runs
its application logic in an individual process. So,
the processor and memory usage are expected to
increase as the number of devices scale up. This is
because as the number of IoT devices increases,
more processes are created. Since Kaala 2.0 uses
Mininet and the Docker framework to simulate

The simulation framework loads a configuration file during startup. This configuration file includes the
list of IoT devices, which needs to be simulated. The support for new IoT devices can be easily added to

Kaala 2.0 by just adding a profile for the newly added IoT device.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2023246

IoT devices, for each IoT device, Mininet, and the
Docker framework create a network interface.
For this article, we didn’t use real-world or simulat-
ed 5G networks for the performance evaluation.
The evaluation was done using IP networks.

concLusIons
We have presented Kaala 2.0—a modeling, simu-
lation and emulation platform that can create IoT
devices of various types. We were able to sim-
ulate devices which can generate large amount
of data to verify and validate 5G technology. We
were able to simulate an entire 5G system which
includes UE, RAN, and 5G Core, and each IoT
edge device was treated as a UE when it connects
to the NextG network. As a future work, we are
planning to do performance evaluation using 5G
networks.

AcknowLedgMents
This research was in part supported by NSF
under grants CNS-1814322, CNS-1831140, CNS-
1836772, CNS-1901103, CNS-2106771, CNS-
2128489 and CNS-2212318.

REFERENCES
[1] Capgemini, “The Growing Need For Private 5G Networks

in Manufacturing Plants,” https://www.capgemini.com/
insights/expert-perspectives/the-growing-need-for-private-
5g-networks-in-manufacturing-plants; accessed Dec. 10,
2022.

[2] AWS, “Run Lambda Functions on the AWS IoT Greengrass
Core,” https://docs.aws.amazon.com/greengrass/v1/devel-
operguide/lambda-functions.html; accessed Nov. 5, 2022.

[3] M. Azure, “Azure/azure-iot-sdks,” https://github.com/
Azure/azure-iot-sdks; accessed Oct. 19, 2022.

[4] G. Cloud, “Overview of Internet of Things | Solutions |
Google Cloud,” https://cloud.google.com/solutions/
iot-overview; accessed May 23, 2022.

[5] U.-I. Project, “Deliverable d03.01, Report on IoT Platform
Activities,” https://docbox.etsi.org/SmartM2M/Open/
AIOTI/IoTPlatformsAnalysisToImprove/D0301WP03H2020.

[6] U. K. Dayalan et al., “ECIoT: Case for an Edge-Centric IoT
Gateway,” Proc. 22nd Int’l. Workshop on Mobile Computing
Systems and Applications, 2021, p. 154–56.

[7] U. K. Dayalan et al., “Veeredge: Toward an Edge-Centric IoT
Gateway,” Proc. 2021 IEEE/ACM 21st Int’l. Symposium on
Cluster, Cloud and Internet Computing, 2021, pp. 690–95.

[8] M. Chernyshev et al., “Internet of Things (IoT): Research,
Simulators, and Testbeds,” IEEE Internet of Things J., vol. 5,
no. 3, 2017, pp. 1637–47.

[9] U. K. Dayalan et al., “Kaala: Scalable, End-to-End, IoT System
Simulator,” Proc. ACM SIGCOMM Workshop on Networked
Sensing Systems for a Sustainable Society, 2022, p. 33–38.

[10] AWS, “IoT Device Simulator,” https://aws.amazon.com/
solutions/ implementations/iot-device-simulator; accessed
June 10, 2022.

[11] M. Salama et al., “IoTnetsim: A Modelling and Simulation
Platform for End-to-end IoT Services and Networking,” Proc.
12th IEEE/ACM Int’l. Conf. Utility and Cloud Computing,
2019, pp. 251–61.

[12] IETF, “Real Time Streaming Protocol (RTSP),” https://tools.
ietf.org/html/rfc2326; accessed Nov. 12, 2022.

[13] Mininet, “Mininet — An Instant Virtual Network on your
Laptop (or Other PC),” http://mininet.org/overview;
accessed Oct. 24, 2022.

[14] Docker, “Get Started with Docker,” https://www.docker.
com/get-started; accessed Dec. 1, 2022.

[15] Open Air Interface, “Open Air Interface,” https://openairin-
terface.org; accessed Oct. 12, 2022.

BIOGRAPHIES
UDHAYA KUMAR DAYALAN [SM] (dayal007@umn.edu) is an Engi-
neering Manager, Connectivity at Trane Technologies for the
past 15 years. He is also a Ph.D. candidate in Computer Science
at the University of Minnesota. He has received a B.S. degree in
Computer Science and Engineering from the Anna University,
and a M.S. in Software Engineering from the University of Min-
nesota. His research interests include 5G, 6G, wireless commu-
nications, Internet of Things, and communications security. He
has more than 18 years experience designing and developing
data communications and security and Internet technologies
products and networks. He has fi led more than 15 Patents.

TIMOTHY J. SALO (salox049@umn.edu) is a Ph.D. candidate in
computer science at the University of Minnesota. He has earned
a B.S. and an M.S. in computer science, an M.B.A. from the Uni-
versity of Minnesota, and an M.S. in software engineering from
the University of St. Thomas. He has also served as a part-time
lecturer teaching undergraduate computer science courses in
computer networks and operating systems. He is the founder
and president of Salo IT Solutions, Inc. (SaloITS). He has over
three decades of experience researching, designing, developing,
marketing, deploying, and operating data communications and
Internet technologies, products, and networks.

ROSTAND A. K. FEZEU (fezeu001@umn.edu) is a Ph.D. candidate
in computer science at the University of Minnesota. Rostand
earned a B.S. degree in computer science and mathematics
with an emphasis in computation from Minnesota State Universi-
ty Moorhead, and a M.S. in computers science from the Univer-
sity of Minnesota. He has previously worked for big technology
companies like Microsoft and Cisco Systems, and has a solid
experience in theories, researching, developing, and implement-
ing Internet technologies and networks systems.

ZHI-LI ZHANG [F] (zhzhang@cs.umn.edu) received his Ph.D.
degree in computer science from the University of Massachu-
setts. He joined the faculty of the Department of Computer
Science and Engineering at the University of Minnesota in 1997,
where he is currently the McKnight Distinguished University
Professor and Qwest Chair Professor in Telecommunications.
He currently also serves as the Associate Director for Research
at the Digital Technology Center, University of Minnesota. His
research interests lie broadly in computer and communication
networks, multimedia systems and content distribution networks,
cyber-physical systems and Internet of Things, machine learning,
and data mining.

FIGURE 4. Kaala 2.0 Performance Evaluation —
Mininet.

FIGURE 5. Kaala 2.0 performance evaluation—dock-
er.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:31:57 UTC from IEEE Xplore. Restrictions apply.

