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AbstrAct
The IoT world is evolving with the latest tech-

nology trends, like edge computing, augment-
ed & virtual reality, machine learning, robotics, 
and 5G. With the digital transformation happen-
ing in Industry 4.0, many industries are moving 
toward private 5G networks. There are massive 
number (hundreds to thousands) of IoT devic-
es in a single factory depending on the scale of 
the industry and these factories consists of critical 
IoT devices, like fire or gas sensors which need 
to operate reliably with less latency. To efficient-
ly realize the capabilities, such as ultra reliable 
low latency communications (URLLC), enhanced 
mobile broadband (eMBB), and massive machine-
type communications (mMTC) offered by 5G, the 
next generation IoT devices/applications need 
a paradigm shift in their design and need to be 
evaluated under simulation using 5G networks 
before getting deployed in the real-world. How-
ever, many IoT simulators run in isolation and do 
not interface with real-world IoT cloud systems 
or support 5G networks. This isolation makes it 
difficult to design, develop and evaluate IoT appli-
cations for industrial automation systems and for 
experiments to fully replicate the diversity that 
exists in end-to-end, real-world systems using 5G 
networks. Kaala 2.0 is the first scalable, hybrid, 
end-to-end IoT and NextG system simulator that 
can integrate with real-world IoT cloud services 
through simulated or real-world 5G networks. 
Kaala 2.0 is intended to bridge the gap between 
IoT simulation experiments and the real world 
using 5G networks. The simulator can interact 
with cloud IoT services, such as those offered by 
Amazon, Microsoft, and Google. Depending on 
the configuration, Kaala 2.0 supports simulation of 
User Equipment (UE), 5G Radio Access Network 
(RAN) and 5G Core and at the same time support 
real-world User Equipment (UE), 5G Radio Access 
Network (RAN) and 5G Core. Kaala 2.0 can simu-
late many diverse IoT devices to evaluate mMTC, 
simulate events that may simultaneously affect 
several sensors to evaluate URLLC and finally sim-
ulate large amount of data to evaluate eMBB.

IntroductIon
The IoT world is evolving with the latest technol-
ogy trends like edge computing, augmented & 
virtual reality, machine learning, robotics and 5G. 
But still there is less business productivity due to 
the slower technical adoption in the industrial 

automation system. There is a tremendous need 
for autonomous networks in the manufacturing 
industry to increase productivity and allow com-
munication between people, devices, and sen-
sors. And there are massive number (hundreds 
to thousands) of IoT devices in a single factory 
depending on the scale of the industry. These fac-
tories consist of critical IoT devices like fire or gas 
sensors which need to operate reliably with less 
latency. But the existing wired and/or wireless 
networks are struggling to fulfil the computation-
al and resources for operations demand of the 
emerging technologies. To address these needs 
of the industries with digital transformation hap-
pening in Industry 4.0, the evolution of private 
5G and 5G standards opens bigger opportunities. 
The network architecture of 5G is designed for 3 
key services in mind: mMTC, eMBB, and URLLC. 
The 5G promises and new capabilities trigger an 
important question: can 5G help manufacturing 
industry to catch-up with the technology changes 
shown in Fig. 1?

Cloud IoT service vendors, such as AWS [2], 
Azure [3], and Google [4], all aim to build their 
own IoT ecosystems, which currently do not 
interoperate with each other. According to the 
UNIFY IoT project, more than 360 IoT companies 
exist today [5]. While there are industry-led efforts 
to ensure interoperability between cloud IoT ser-
vices, non-interoperable cloud IoT services are 
likely to remain the rule.

MotIvAtIons: need And LIMItAtIons of 
sIMuLAtIon frAMeworks

Expensive and Cumbersome Real Setup: Proto-
typing, testing, and evaluating new IoT devices 
and systems can be expensive. Beyond the cost 
of the devices themselves, setting up, configuring, 
and maintaining a diverse collection of physical 
IoT devices can quickly become time-consum-
ing, cumbersome, unwieldy, and expensive. As 
a result, simulators are often used to test and 
evaluate new product ideas and designs early in 
the development process. Since cloud services 
have become a critical component of many IoT 
systems, it is beneficial that these simulations be 
able to evaluate end-to-end systems, from the IoT 
devices to the IoT cloud services.

Vendor Locked: However, simulating end-to-
end IoT systems as shown in Fig. 2 is complicat-
ed by the vendor specific nature of these cloud 
IoT services. Each vendor requires IoT devices to 
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implement a different set of protocols to authen-
ticate and collect data from these devices. As a 
result, IoT devices are often locked into one cloud 
IoT service provider [6, 7].

Limited Capabilities of Existing Simulation 
Frameworks: An alternative to waiting until phys-
ical devices have been developed and construct-
ed, is to use IoT simulators to test and evaluate 
prospective IoT devices, systems, and designs. If 
these simulators and experiments are designed 
properly, simulation can significantly reduce the 
gap between proof-of- concept (PoC) implemen-
tations and real-world deployments [8]. Unfor-
tunately, existing IoT simulators are limited in 
their capabilities and scopes. Many simulators 
are designed to run on a single laptop, desktop, 
or a server, and are therefore poorly positioned 
for large-scale simulations that require signifi-
cant computational power. Most of simulators 
fail to capture the large variety and diversity of 
IoT devices that exist today. For example, many 
are tailored to simulating only small sensors with 
low bandwidth requirements, ignoring a vari-
ety of IoT devices (e.g., surveillance cameras 
and autonomous vehicles) that consume large 
amounts of network bandwidth and require 
real-time cloud connectivity. Perhaps more 
importantly, existing IoT simulators operate in 
isolation: they interface with only a limited num-
ber of types of IoT devices and cannot be inte-
grated with existing cloud services.

In short, existing IoT simulators cannot be used 
to effectively test and evaluate prototype IoT sys-
tems, especially those that require computational-
ly intensive subsystems, such as machine learning 
algorithms, Cloud IoT services, or IoT control 
mechanisms running on edge computing facilities. 
Chernyshev et al. [8] in a recent survey highlight-
ed that an all-in-one simulator capable of support-
ing an end-to-end IoT service with 5G networks 
has yet to be developed. New simulation tools 
and test-and-evaluation environments are sore-
ly needed for unit testing and for the systematic 
evaluation of intelligent IoT services that include 
diverse, integrated devices, edge computing and 
cloud computing components.

the scope of thIs ArtIcLe
We present Kaala 2.0—a modeling, simulation, 
and emulation platform that can specify IoT devic-
es of various types, from low-powered sensors 
to smart IoT devices requiring high bandwidth, 
such as IoT devices that anticipate emerging 5G 
networks. Kaala 2.0 is an extension of Kaala [9] 
and simulates UE, RAN and 5G Core at the same 
time connect to real-work UE, RAN, and 5G Core. 
In addition to simulating IoT devices, an import-
ant feature of Kaala 2.0 is its ability to interface 
and connect with real-world cloud IoT services in 
an integrated fashion. The initial version of Kaala 
2.0 can use Amazon AWS [2], Microsoft Azure 
[3] and Google [4] IoT cloud services. The main 
design goal of Kaala 2.0 is to help researchers and 
practitioners to prototype various IoT scenarios, 
including those that use high bandwidth 5G ser-
vices, generate massive amounts of data, and to 
help bridge the gap that exists between simulators 
and real-world system. The major contributions 
are summarized below:

FIGURE 1. Gaps in manufacturing industry and trends [1].

FIGURE 2. IoT (Edge) Devices, IoT Gateway, and IoT Cloud.
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• We present Kaala 2.0: An IoT modeling and 
simulation platform that can specify IoT 
devices of various types to communicate 
with real-world cloud IoT systems, like AWS, 
Amazon, Google, and many other IoT Cloud 
platforms as case studies through simulated 
or real-world 5G networks.

• Kaala 2.0 is a scenario based IoT simulator 
capable of mimicking various IoT scenarios 
such as “fire in a room or building” to eval-
uate URLLC service of 5G and “5G network 
capable data generation (including 4K/8K 
video IP cameras)” scenarios.

• Kaala 2.0 can simulate massive number of 
IoT devices to evaluate mMTC service of 
5G.

• Kaala 2.0 can generate massive amounts of 
IoT data for prototyping data intensive IoT 
applications to evaluate eMBB service of 5G.
The rest of the article is organized as follows: 

We motivate the need for new simulation frame-
work using case studies. And define the multi-lay-
ered paradigm of Kaala 2.0. The design and 
implementation of Kaala 2.0 are presented below, 
respectively. Kaala 2.0 is simulated and evaluated 
with a conclusion.

cAse studIes:  
need for A better sIMuLAtIon frAMework

We use three case studies to argue the need for 
a better simulation framework, while discussing 
their challenges.

AbILIty to InterAct wIth reAL systeMs usIng 5g networks
Emergent IoT applications are extremely complex 
and operate in a very diverse IoT world. These 
are not just the smart speakers, smart thermostats,  
or smart door locks in our homes, but also sen-
sors used in domains like in the oil, gas, noise, and 
automobile industries. These applications support 
different systems connected through IoT using dif-

ferent net- works. There are no differences in data 
flow between real and simulated IoT devices. And 
there are less differences when using real and sim-
ulated networks. Researchers use simulators to 
study, prototype, test, and evaluate new IoT and 
5G concepts. However, these simulators fail to 
reflect the complexity that exists in real IoT envi-
ronments. For example, current IoT simulators do 
not simulate 5G networks. The IoT simulator pro-
vided by AWS [10] can only simulate one type of 
IoT device. It simulates hard-coded IoT messages 
and does not simulate the network characteristics 
of 5G networks along with massive IoT data. To 
the best of our knowledge, current IoT simulators 
operate in isolation and do not interact with real 
cloud IoT system or support 5G networks, failing 
to reflect the complexity present in the IoT world. 
Kaala 2.0 is intended to remedy these deficien-
cies. Kaala 2.0 simulates several vendors specific 
IoT devices, (including those from AWS, Google, 
and Azure), and can connect to and communi-
cate with real-world cloud IoT systems provided 
by these vendors using 5G networks. Kaala 2.0 
connects simulated IoT devices with real servers 
(within the complex IoT world) using 5G net-
works, so that services provided by 5G can be 
used, validated, and verified. For instance, Kaala 
2.0 connects simulated IP cameras, temperature 
sensors, humidity sensors, and flame sensors to 
the Amazon’s Kinetic video streams using simu-
lated or real 5G networks and builds logic around 
these sensors to simulate a fire event.

scenArIo-bAsed dAtA/event sIMuLAtIon
We use a fire-in-a-building event to make the case 
for the need of a scenario-based data generation 
and 5G service. IoT data generated by IoT simula-
tors are hard-coded [11]. A more realistic approach 
might be to generate sensor data based on a dis-
tribution or based on the actual behavior of the 
sensor. Consider a fire-in-a-room scenario. When 
there is a fire in the room, the temperature in the 
room increases and the temperature sensor will 
report a higher value than usual. The smoke sensor 
will detect the smoke in the room and send the 
smoke alarm. The humidity in the room increases 
and the humidity sensor will be sending the updat-
ed humidity value. Some sensors might malfunc-
tion, burn, or lose connection because of the fire. 
Thus, relying on a few sensors’ data values will be 
problematic. And the critical data need to be priori-
tized for cloud analysis within the expected latency 
of each application to realize the URLLC service 
offered by 5G even when massive IoT devices are 
connected to the 5G network.

hIgh-bAndwIdth dAtA generAtIon
IoT simulators ought to support next-generation 
network technologies such as 5G. With higher 
5G throughput, next generation IoT applications 
should seamlessly adapt to 5G. However, this is 
not the case due to lack of tools which foster the 
design, development, and deployment of 5G-ca-
pable applications both on the client and serv-
er side. For instance, a video streaming service 
provider like YouTube or Netflix have millions 
of users watching videos. The throughput will 
depend on the quality of the video. Recently 8K 
videos require significantly higher bandwidth to 
play a single frame compared to a 480p video 

FIGURE 3. Kaala 2.0 layered architecture.
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quality. For example, a video of ’X’ minutes 
requires 119 MB for a 240p video, 1038 MB for 
a 1080p video, and 7284 MB for an 8K video. 
Thus, prototyping 5G next generation IoT appli-
cations using an IoT simulator that can support 
the massive data workloads seen in production 
environment should be addressed. Current IoT 
simulators do not support modeling thousands of 
IoT devices with large amount of data. Kaala 2.0 
realizes this challenge by simulating IP cameras 
that supports 8K video streaming and can scale to 
hundreds (and even thousands) as shown later. In 
addition, each IoT edge device can be simulated 
as a UE to communicate to the NextG network.

defInIng kAALA 2.0: A MuLtI-LAyered pArAdIgM
Kaala 2.0 is able to integrate real and simulated 
devices while leveraging vendor specific SDKs to 
connect them to real systems in the cloud. Next, 
we motivate and detail each layer in Kaala 2.0’s 
architecture as shown in Fig. 3.

Key Objectives: There are three main objec-
tives of Kaala 2.0:
• Simulate various IoT devices, including ven-

dor specific IoT devices and connect them 
to vendor’s cloud IoT services.

• Simulate realistic data across all applicable 
devices to mimic real IoT service scenarios.

• Generate high-throughput data.
Cloud Layer: This layer is the real cloud IoT 

systems that Kaala 2.0 connects to. It authenti-
cates, validates, and accepts incoming connec-
tions and IoT data from the IoT gateway. The 
cloud layer provides core entities for massive data 
transformation, data analysis and interpretation. 
It provides data stream processing resources and 
cloud services for machine learning related tasks, 
business integration and user management.

5G Core Layer: This layer is the simulated 5G 
core to which each of the simulated RAN con-
nects to. On the other end, the 5G Core con-
nects to the internet. This can be replaced with 
real-world 5G core as well in which the RAN also 
should be real-world 5G RAN and the UE need to 
have proper service to the real-world 5G provider.

RAN Layer: This layer is the simulated RAN to 
which the simulated UEs connect to. There can 
be more than one RAN and each RAN connect 
to one 5G core. This can be replaced with real-
world 5G RAN which connects to real-world 5G 
core as well in which the UE need to have proper 
service to the real-world 5G provider.

Gateway Layer: The IoT gateway connects 
Kaala 2.0 to real cloud IoT systems. It runs ven-
dor-provided SDKs, which contain the RESTFul 
APIs needed to connect to the cloud layer. It 
serves as an MQTT broker (server) to IoT (Edge) 
devices and is a client that connects to the cloud. 
The MQTT broker receives IoT data from the net-
work layer and translates the data into vendor 
specific data formats via their SDKs.

Network Layer: The network layer connects all 
the other layers. It is a virtual network that models 
a real network. This layer provides the resources 
needed for the gateway to connect to real systems. 
Every instance of this layer creates a separate, isolat-
ed virtual network that can connect to real systems.

Storage Layer: The storage layer is composed 
of different vendor SDKs, security contexts, data 
storage, and configuration files. Cloud service 

providers support different SDKs, RESTFul APIs, 
data formats, security mechanisms, certificates, 
and keys. This layer is responsible of contacting 
the service providers and obtaining the updated 
certificates, keys, and SDKs used by the gateway 
layer or the application layer for authentication 
and validation.

Application Layer: This is the layer responsible 
for simulation configurations, parameters tuning, 
IoT device configuration, network configuration, 
and experiment scenarios. The purpose of the 
application layer is to run application specific logic.

desIgnIng kAALA 2.0:  
enhAnced cApAbILItIes wIth nextg support

We discuss Kaala 2.0’s design goals followed by a 
detailed design to guide our implementation.

desIgn goALs
The key design goals for Kaala 2.0 are four-fold: 
• Connect simulated IoT devices to real cloud 

IoT services using 5G networks.
• Provide extensibility of IoT device character-

istics for IoT devices.
• Simulate real-time events coordinated across 

multiple IoT devices.
• Generate realistic data to support current 

and future technologies like 5G. 
Below, we will discuss how Kaala 2.0 achieves 
these design goals.

scenArIo-bAsed event sIMuLAtIon
The design of Kaala 2.0 supports most of the real-
time scenarios. The basis of scenario-based simu-
lation is to coordinate one or more simulated IoT 
devices to match values based on the scenarios at 
the same duration range. Kaala 2.0 supports simu-
lation of one or more scenarios either at the same 
time or in sequence. The fire-in-the-room scenario 
is a built-in scenario in the Kaala 2.0 simulation 
framework. When there is a fire detected in the 
room, the smoke sensor detects the smoke, the 
door lock opens automatically, the temperature 
in the room increases, the humidity in the room 
increases as well and the IP camera in the room 
captures the video.

hIgh-bAndwIdth dAtA sIMuLAtIon
Next, to simulate a high-bandwidth scenario, we 
design our simulated IP camera using a Real-Time 
Streaming Protocol (RTSP) server [12] and client. 
The server will listen in a port and the client will 
be listening in a different port. The producer of 
the video will be connecting to the server port 
and the consumer of the video will be connect-
ing to the client port to play the video. Both the 
producer and consumer can be designed to run 
in any host, so that the traffic flows through the 
network. More about RTSP implementation and 
evaluation are discussed below.

nextg network support
To support NextG simulation, Kaala 2.0 is 
designed to support regular network connection 

Kaala 2.0 is able to integrate real and simulated devices while leveraging vendor specific SDKs to  
connect them to real systems in the cloud.
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to the cloud as well as connecting to the cloud 
through RAN and 5G Core. In case of NextG, 
each IoT device will connect to the 5G network 
as a UE. The design supports connecting the IoT 
gateway to the RAN as a UE or each IoT device 
as a UE to the RAN. If each IoT device acts as a 
UE, then those devices won’t be able to integrate 
with a IoT gateway, it needs to connect to the 
IoT cloud through the 5G Core. Once the UE is 
connected to the 5G Core, then it can start send-
ing the IoT related data to the IoT cloud through 
the RAN and 5G Core. Each IoT device will have 
an option to be a regular IoT device or NextG 
capable device. Kaala 2.0 supports both simulat-
ed and real-world UE’s. The real-world UE’s can 
connect only to real-world RAN and the simulated 
UE’s can connect only to simulated RAN due to 
the radio conditions. Because in simulations, the 
radio conditions are simulated as well. The real-
world RAN can connect to both simulated and 
real-world 5G core based on the system setup.

InterActIng wIth reAL-worLd systeMs usIng 5g networks
To support connection with both simulated and 
real networks including 5G networks, we lever-
age Mininet [13] and docker [14]. Mininet has 
the capability to create various types of virtual 
networks using different types of switches and 
controllers, and each host will be running as a 
process. Docker has the capability to create vir-
tual networks and each host will have its own 
container [14]. These Mininet and docker virtual 
devices have IP addresses assigned to them and 
therefore can connect to real physical networks. 
Both the Mininet and docker architecture sup-
ports running real application processes in the 
respective host instances. Using this, the simulat-
ed applications run the respective SDKs in the 
various hosts as processes. This architecture is 
highly scalable when compared (Table 1) to the 
architecture proposed by IoTNetSim in [11]. This 
is because IoTNetSim creates virtual machine for 
each simulated device. Moreover, in IoTNetSim 
the SDKs need to be installed individually in each 
virtual machine.

reALIzIng kAALA 2.0:  
IMpLeMentAtIon of the frAMework

key enAbLIng technoLogIes
We used Mininet [13] and the Docker frame-
work [14] to simulate the IoT devices. The sim-
ulator framework can simulate both generic IoT 

devices and vendor specific IoT device. Since 
we are leveraging the Mininet framework, each 
IoT device runs in its own process and gets ded-
icated network resources. We used the NodeJS 
version of the Mininet framework to simulate the 
IoT devices. And for the Docker version, each 
IoT device runs in its own container. The generic 
IoT device uses the basic MQTT client and the 
vendor specific IoT device uses the respective 
vendor specific client SDK to communicate to 
the IoT Gateway. The IoT Gateway information, 
including the authentication details required to 
connect to the vendor specific IoT Gateway, are 
passed as parameters when starting the respec-
tive vendor- specific simulated IoT devices, so 
each device knows which IoT Gateway they 
need to connect, authenticate, and communi- 
cate with. Each simulated IoT device also consists 
of a profile, which specifies the type of device it 
simulates, and the list of properties associated 
with the IoT device.

confIgurIng the end-to-end systeM
The simulation framework loads a configuration 
file during startup. This configuration file includes 
the list of IoT devices which needs to be simulat-
ed. The support for new IoT devices can be easily 
added to Kaala 2.0 by just adding a profile for 
the newly added IoT device. The new IoT device 
can either use the generic application logic which 
sends data periodically based on the configura-
tion which is discussed next or implement its own 
application logic. Each IoT device entry in that list 
contains a list of properties and these properties 
can be easily extended for new properties. Some 
of the key properties include the name of the IoT 
device, the profile (light, HVAC, smoke sensor, 
etc.) of the IoT device, the type of device (generic 
or vendor specific) and finally the list of properties 
and the respective time-interval to report to the 
IoT Gateway. 

scenArIo-bAsed event setup 
There is another configuration file called the 
scenario configuration file. The main purpose 
of this configuration file is to specify when the 
scenario needs to be executed, the list of IoT 
devices properties which need to be included 
in the scenario and the values of the properties 
of those IoT devices during the scenario. The 
default values need to be specified at the end 
of the scenario-based configuration file, to com-
plete the scenario.

hIgh-bAndwIdth dAtA generAtIon usIng  
vIdeo streAMIng

As discussed above, there are two main compo-
nents in simulating an IP camera: the producer, 
and the consumer. The video that needs to be 
streamed in the IP camera needs to be configured 
in the simulation configuration file, along with the 
period of the stream. Based on the configuration, 
Kaala 2.0 will connect to the RTSP server to send 
video data. The producer keeps producing the 
video to the RTSP server by connecting to the 
local RTSP server port and the consumers can 
consume the video by connecting to the client 
port of the RTSP server of the respective IP cam-
era IoT devices.

TABLE 1. Comparison of Kaala 2.0 With IoTNetSim.

Features IoTNetSim Kaala 2.0

Vendor specific IoT devices No Yes

MQTT protocol broker No Yes

Cloud layer Yes No

Semi-real IoT devices No Yes

5G capable scenarios No Yes

5G RAN No Yes

5G core No Yes
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nextg IntegrAtIon

We leveraged Open Air Interface’s (OAI) [15] 
UE, RAN and 5G Core modules for Kaala 2.0. 
Each of the IoT device will run OAI’s UE module. 
To simulate 5G networks, the 5G Core and RAN 
are started in sequence. Then the IoT devices are 
deployed and the UE module in the IoT device 
connects to the configured RAN accordingly. If a 
IoT device is configured to be a NextG capable, 
then it will act as a UE and try to connect to the 
5G RAN else it will try to connect to the cloud 
using regular IP network.

sIMuLAtIon And perforMAnce evALuAtIons
We seek to understand the capabilities, scalabil-
ity, and performance of Kaala 2.0. We connect 
simulated IoT devices to a real network (we use 
Amazon AWS as case study) using 5G networks 
and finally evaluate a scenario-based simulation 
using IP networks.

systeM setup
For the experimental setup, we used a Linux Virtu-
al Machine (VM) which was allocated 4GB mem-
ory, two processors and 20GB for storage. The 
VM was running Ubuntu.

scenArIo-bAsed event sIMuLAtIon
We assess the scenario- based event simulation in 
Kaala 2.0. First, for fire-in-the-room scenario, the 
necessary IoT devices were configured via the 
Kaala 2.0 configuration file. This configuration file 
is also a pre-configured profile in Kaala 2.0. Initial-
ly, all the IoT devices will be publishing respective 
data to the IoT gateway or IoT cloud and the data 
will be related to normal operation in a room. In 
the scenario configuration file, the time to start 
the scenario-based simulation will be specified. At 
that time, each IoT device property configured in 
the scenario configuration file will be configured 
with the value specified in the scenario configu-
ration file. And the values get changed synchro-
nously across all these IoT devices. The flame 
sensor will report ’true’ stating that a flame has 
been detected. The temperature sensor shows a 
significant increase in the current temperature. 
Also, a video in which fire is shown is played at 
the same time.

hIgh-bAndwIdth dAtA generAtIon
Kaala 2.0 have an RTSP server running when sim-
ulating an IP camera IoT device. The server and 
client port of the RTSP server are configurable in 
the IP camera IoT device profile. As of now, the 
simulated IP camera IoT device can run server 
and client on the same port number. This can be 
a potential future work to support different ports 
for different IP camera IoT devices. An 8K video is 
sent to the simulated IP camera by connecting to 
the server port of the RTSP server. And the con-
sumer consumes the video by connecting to the 
client port of the RTSP server which is running 
in the simulated IP camera IoT device. Both the 
producer and consumer were run in a host other 
than the IP camera IoT device, so that the traffic 
can be flowed in the network. The video being 
played by the producer can be completely con-
troller by the application using the simulator con-
figuration file. Additionally, the timing of different 

scenarios can be controlled and configured by 
the scenario-based configuration file.

nextg sIMuLAtIon
During the startup, an instance of 5G Core and 
RAN are started and the RAN is connected to 
the 5G Core. In the configuration file, if the IoT 
device is configured as NextG capable, then the 
IoT device acts as a UE and successfully connect-
ed to the configured RAN. Once when the UE 
is successfully attached to the RAN, the IoT data 
is sent through the RAN and 5G Core to the IoT 
cloud. Support for multiple UE’s connecting to 
the 5G core was evaluated and the data flow 
from the UE to the IoT cloud through the RAN 
and 5G Core was evaluated as well.

InterActIng wIth reAL systeMs usIng 5g networks
For this experiment setup, we first created a user 
profile in the AWS IoT, and then configured an 
IoT device along with the necessary security cer-
tificates that are required to authenticate and 
connect to the AWS IoT Cloud. The security cer-
tificates are downloaded in the host machine in 
which Kaala 2.0 is running. Next, in the Kaala 2.0 
configuration, we specify that a vendor specific 
IoT device needs to be simulated; the path to the 
downloaded security certificates is configured as 
well. These steps can be repeated for any number 
of vendor- specific devices. The same steps can 
also be followed for different vendors, like Mic-
rosoft Azure or Google IoT clouds, as well. Then, 
we start the simulation framework. Based on the 
loaded configuration, Kaala 2.0 knows that a ven-
dor specific IoT device needs to be simulated and 
the application in the simulated devices will try 
to connect to the IoT gateway or IoT cloud using 
the provided security contexts using the above 
mentioned 5G network. Once connected, the 
simulated IoT device will start publishing the data. 
Particularly, in this experiment, all the data is pub-
lished to AWS IoT cloud.

scALAbILIty And perforMAnce
To understand the memory consumption and 
scalability of Kaala 2.0, we conducted two exper-
iments; In the first and second experiment, we 
simulated 10 and 100 IoT devices respectively. 
The simulated IoT devices were a combination 
of temperature sensor, smoke sensor, humidity 
sensor, flame sensor and motion sensor. Each of 
these sensors publish their data based on their 
IoT device profile every 15 seconds. The data in 
Figs. 4 and 5 shows that as the number of sen-
sors increases, the processor and memory usage 
increase significantly. Kaala 2.0 is not just a sim-
ulator; it is an emulator as well. Each sensor runs 
its application logic in an individual process. So, 
the processor and memory usage are expected to 
increase as the number of devices scale up. This is 
because as the number of IoT devices increases, 
more processes are created. Since Kaala 2.0 uses 
Mininet and the Docker framework to simulate 

The simulation framework loads a configuration file during startup. This configuration file includes the 
list of IoT devices, which needs to be simulated. The support for new IoT devices can be easily added to 

Kaala 2.0 by just adding a profile for the newly added IoT device.
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IoT devices, for each IoT device, Mininet, and the 
Docker framework create a network interface. 
For this article, we didn’t use real-world or simulat-
ed 5G networks for the performance evaluation. 
The evaluation was done using IP networks.

concLusIons
We have presented Kaala 2.0—a modeling, simu-
lation and emulation platform that can create IoT 
devices of various types. We were able to sim-
ulate devices which can generate large amount 
of data to verify and validate 5G technology. We 
were able to simulate an entire 5G system which 
includes UE, RAN, and 5G Core, and each IoT 
edge device was treated as a UE when it connects 
to the NextG network. As a future work, we are 
planning to do performance evaluation using 5G 
networks.
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FIGURE 4. Kaala 2.0 Performance Evaluation — 
Mininet.

FIGURE 5. Kaala 2.0 performance evaluation—dock-
er.
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