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ABSTRACT

Remote driving, or teleoperating Autonomous Vehicles (AVs),
is a key application that emerging 5G networks aim to sup-
port. In this paper, we conduct a systematic feasibility study
of AV teleoperation over commercial 5G networks from both
cross-layer and end-to-end (E2E) perspectives. Given the crit-
ical importance of timely delivery of sensor data, such as
camera and LiDAR data, for AV teleoperation, we focus in
particular on the performance of uplink sensor data delivery.
We analyze the impacts of Physical Layer (PHY layer) 5G
radio network factors, including channel conditions, radio
resource allocation, and Handovers (HOs), on E2E latency
performance. We also examine the impacts of 5G networks
on the performance of upper-layer protocols and E2E appli-
cation Quality-of-Experience (QoE) adaptation mechanisms
used for real-time sensor data delivery, such as Real-Time
Streaming Protocol (RTSP) and Web Real Time Communi-
cation (WebRTC). Our study reveals the challenges posed
by today’s 5G networks and the limitations of existing sen-
sor data streaming mechanisms. The insights gained will
help inform the co-design of future-generation wireless net-
works, edge cloud systems, and applications to overcome the
low-latency barriers in AV teleoperation.
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1 INTRODUCTION

Since the DARPA Grand Challenge in 2005 [18], tremendous
progress has been made in the development of AVs. Pilot
“robotaxi” services are now available in several major cities in
the United States (U.S.) [37, 38, 54]. Today’s AVs can, at best,
be rated as Society of Automotive Engineers (SAE) Level-
4 [4, 46, 62, 63]: Namely, such AV is designed with a specific
set of conditions, referred to as itsOperational Design Domain
(ODD), outside which it must come to a safe stop. Despite
significant advances in AI/ML, fully autonomous driving
(Level-5) still has a long way to go. Safety concerns and
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Corresponding authors: fezeu001@umn.edu, carpe415@umn.edu.

other issues plaguing robotaxi trials [17, 20, 41, 61] highlight
the challenges posed by complex real-world environments.
To partly circumvent these challenges, remote driving

– or teleoperated driving (ToD) in the 3rd Generation Part-
nership Project (3GPP) parlance – has been proposed as an
alternative or complementary approach [11, 24, 74], where a
remote human operator takes over the control of AV when
needed. For example, before the AV is about to encounter a
situation outside its ODD and has to stop [48]. The potential
of ToD is inspired by the promise of 5G, and is considered
one of its key use cases by 3GPP and 5G Automotive Asso-
ciation (5GAA) [11]. ToD has been tested in (mostly ideal
and) restricted environments [5, 25, 35, 53, 68]; several start-
up companies are promoting remote driving for certain use
cases [6, 7, 23, 45]. Therefore we ask, Can today’s commercial
5G meet the requirements of ToD in real-world environments?
This question is the main goal of this paper.

To this end, we contribute to the understanding of ToD
and carry out a systematic feasibility study of AV teleoper-
ations over commercial 5G networks in real-world urban
environments in the city of Minneapolis in the U.S. We note
that AV ToD requires timely delivery of i) Uplink (UL) on-
board sensor data like camera/video and LiDAR feeds from
a host AV to a remote vehicle control station operated by
a human to provide (real-time) situation awareness; and ii)
Downlink (DL) Command and Control (C&C) data from the
remote human operator to the host AV for vehicle control re-
motely. Per [11] (see §2.1), the E2E UL and DL latency within
100 ms and 20 ms respectively are considered ideal. In terms
of data rates, clearly UL sensor data – video and especially
LiDAR – require significantly high bandwidth, whereas DL
delivery of C&C data requires little bandwidth (§2.1). Un-
fortunately, today’s commercial 5G networks are designed,
configured, and optimized primarily for mobile Internet ac-
cess. This createsDL/UL asymmetry in bandwidth and latency
(see §2.2). Furthermore, high mobility of AVs induces highly
fluctuating radio channel conditions and frequent HOs, both
of which can increase Block-Level Error Rates (BLERs) at the
Radio Access Network (RAN) and require retransmissions,
thereby incurring higher latency.
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We take a cross-layer approach to investigate the funda-
mental impacts of 5G networks on the AV teleoperation.
Given the stringent performance requirements of teleoper-
ation, our aim is to characterize the E2E performance for
sensor data – video and LiDAR – streamed over a commercial
5G network to an edge-cloud server in a remote teleopera-
tion station in the same geographical region as the AV. We
introduce QoE metrics at the per-frame level – as frames
are the basic units for video display and camera/LiDAR data
processing (§4.2). We investigate the effectiveness of video
compression (§5.1) and bitrate adaptation (§7) in reducing
the one-way delay when streaming video (and LiDAR) data,
and quantify timing of critical C&C including steering, accel-
eration, and braking over commercial 5G networks (§5.4). We
extract 5G RAN parameters to understand the impact of 5G
PHY layer factors – such as channel conditions, BLERs, HOs,
and Resource Blocks (RBs) allocation – on per-frame E2E la-
tency, with a focus on tail latency (§6). Additionally, we eval-
uate how 5G affects upper-layer protocols and E2E applica-
tion layer QoE adaptation mechanisms used in real-time sen-
sor data delivery protocols like RTSP [15] and WebRTC[26].
From our insights, we further explore challenges in teleoper-
ating multiple AVs over 5G and examine potential benefits
of using multiple 5G operators to mitigate tail latency degra-
dation and optimize network resource utilization.
The key findings of our paper are summarized as follows:
• We define per-frame level QoE metrics to characterize sen-
sor data delivery E2E latency performance and visual quality.
In particular, we introduce perceptual quality deviation to cap-
ture the latency-visual-quality interplay (§4.2). Using RTSP
(commonly used in many existing AV teleoperation plat-
forms [39, 65]) and WebRTC (a common low latency video
conferencing streaming system, and used by industry [45])
as the baselines §5.1, we examine the effectiveness of video
data compression and LiDAR data voxel-based downsam-
pling techniques in attaining E2E low-latency performance
and quantify the impact of latency on perceptual quality
performance. We find that while it is feasible to stream a
single camera (as is the case in several field tests [25, 53])
to teleoperate an AV in most scenarios, the poor tail latency
performance still raises safety concerns, as a safety-critical
event can occur during such periods of poor performance.
• Situational awareness for teleoperation requires streaming
multiple camera feeds and LiDAR data. We find that stream-
ing these sensors simultaneously would likely strain today’s
5G networks, even with the 5G Standalone (5G-SA) archi-
tecture. Without aggressive compression, streaming LiDAR
over today’s 5G networks is nearly impossible (§5.3). We
also find that all existing data streaming mechanisms suffer
from the cumulative latency effect (§5.1), which causes later
frames to be more likely to suffer from deadline violations.

• For DL C&C, the latency experienced is roughly half of the
UL latency and does not face throughput bottlenecks due to
the smaller sizes of the commands. This echoes existing work
and strengthens the feasibility of sending control commands
with reasonable time and reliability (§5.4).
• 5G PHY layer dynamics significantly affect sensor data
delivery for teleoperation. For example, on the one hand,
when the channel conditions, as characterized by Channel
Quality Indicator (CQI), go from “good” to “poor”, the E2E
frame delay increases by about 48%. In contrast, when fewer
retransmissions occur on the PHY layer – quantified by a
shift in BLERs from +10% down to 0-5%, the frame delay
drops by approximately 35.8%. On the other hand, HOs pose
an even greater challenge; we find that unnecessary ping-
pong HOs can occur within a short time window (15 seconds
in our analysis) while driving in a loop and making turns.
As a result, the sensor data frame delay increases by up to
85% (§6).
•Our results show that WebRTC, Google’s live video stream-
ing system, succeeds in delivering low latency video frames
(compared to RTSP), but fails to quickly respond to chang-
ing 5G network conditions resulting in overall reduced and
struggling performance despite the PHY layer awareness and
speediness of recovery. RTSP lacks any of these mechanisms
and therefore struggles significantly in terms of per-frame
delay impact. This manifests as a spike in per-frame latency,
which could have been avoided with the knowledge of the
lower-layer information. As we demonstrate in §7, the lower
layer was aware of a problem far sooner than the application-
level congestion and QoE triggers.
• Based on the above findings, we briefly explore the poten-
tial benefits of additional end-system mechanisms, such as
selective frame dropping/frame rate adaptation, as well as
leveraging multiple 5G operators to improve tail latency per-
formance. We also consider the additional challenges posed
by multiple AVs competing for radio resources (§8).

Contributions.We contribute to advancing the understand-
ing of teleoperated driving over commercial 5G networks
and conduct – to the best of our knowledge – the first feasi-
bility study of AV teleoperation over operational live com-
mercial 5G networks in a real-world urban environment from
cross-layer and E2E perspectives, elucidating in particular
the impacts of 5G networks on UL vehicle sensor data deliv-
ery. Our study reveals the challenges posed by 5G networks
as well as the limitations of existing sensor data streaming
mechanisms. Through exploration of additional end-system
mechanism designs, we show that while these mechanisms
can improve the tail latency performance, they cannot fun-
damentally address the challenges posed by 5G networks.
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Figure 1: Experimental Setup, Tools, & Streaming System.

Table 1: AV Teleoperation La-

tency Requirements

Application

Level

5G Network

Level

UL: 100 ms UL: 40 - 45 ms
DL: 20 ms DL: 15 ms

Table 2: Sensor Data Through-

put Requirements (in Mbps).

Camera (UL) LiDAR (UL) C&C (DL)

1-
Steam

4-
Streams

64-
Beams

128-
Beams

8 32 277 307 0.3

2 BACKGROUND AND MOTIVATION

Fig. 1 shows our testbed, a typical setup – an AV equipped
with several sensors, sending data via 5G in the UL to a
remote vehicle control station. A remote teleoperator then
issues a maneuver, trajectory C&C in the DL to the vehicle.
The delivery of sensor and C&C data via the 5G networks
has strict latency requirements, which if not met, can be
dangerous and potentially even catastrophic, especially in
unexpected time-critical situations facing the vehicle. In this
section, we discuss the application-level requirements for
teleoperation and the required throughput to stream vehicle
sensor data. We then provide some background on existing
commercial 5G networks and motivate our feasibility study.
Latency Requirements. Table 1 summarizes the latency
requirements as specified by 5GAA [12]. These requirements
are derived from system analysis, simulation/emulation stud-
ies, and field experiments (see [10, 11, 13, 16, 58]). Clearly,
the DL C&C data has a more stringent delay requirement of
20 ms and 15 ms for the application-level and 5G network-
level respectively, but consumes far less bandwidth (i.e.,
0.3 Mbps). In the UL, the application-level latency require-
ment is 100 ms while the 5G network-level latency require-
ment is 40–45 ms. These requirements are also in line with
the observations gained from emulation-based human sub-
ject studies in [13, 16, 58, 66] – in which, a human driver can
generally steer the vehicle remotely when the application-
level UL latency is under 100 ms, but performance degrades
quickly beyond that, becoming nearly impossible above 500ms.

2.1 ToD Performance Requirements

AV Sensor Data Rate Requirements. We use our AV’s top
view, shown in Fig. 2, as an example of some sensors in a typ-
ical AV. The Global Navigation Satellite System (GPS/GNSS),
enhanced by real-time kinematic (RTK) positioning and on-
board Inertial Measurement Unit (IMU) and odometer read-
ings, provides accurate (centimeter-level) data on location,
speed, orientation, and angular rate—essential for trajectory

tracking and driving control. The GigE RGB cameras cap-
ture wide road views for situational awareness and object
detection, while a thermal camera aids nighttime detection
by showing heat signatures. LiDAR uses light reflections
to measure distances and create high-resolution 3D point
clouds. When augmented with Camera data feeds, the depth
information can be associated with each object, giving the
remote operator a sense of how far each object is. Radar,
though less precise, detects objects by measuring distance,
azimuth, and velocity using radio waves, offering a longer
range than LiDAR. Refer to Table 4 in Appendix 10.2 for a
detailed discussion of all our AV sensors. According to [3]
and our data collection, LiDAR and camera data constitute
78.3% and 18% of all sensor data streamed by a typical AV,
while all other data types constitute < 1%. Thus, our analy-
sis in this paper mainly focuses on camera and LiDAR data
with throughput requirements of 8 Mbps for a single camera,
277 Mbps and 307 Mbps for a 64- and 128-beams LiDAR data,
respectively (see Table 2).

2.2 5G Networks Today: PHY Performance

Commercial 5G networks are widely deployed worldwide,
and a number of measurement studies have been published
characterizing their performance (see e.g., [28, 32, 36, 43],
and §3 for more discussion). In Minneapolis, where we con-
duct our AV feasibility study, all three major U.S. operators,
AT&T (AT), T-Mobile (TM), and Verizon (VZ), are deployed.
At the time of our study, AT and VZ deployed their 5G ser-
vice using the 5G Non-Standalone (5G-NSA) mode – which
depends on 4G Evolved Packet Core (EPC). AT and VZ utilize
primary 5G mid-band (more specifically, the C-band) and
mmWave channels, respectively. In contrast, since spring
2023 TM deployed its 5G service in the 5G-SA mode – which
depends on 5GCore Network (5G Core). TM utilizes multiple
mid-band channels (in band n25, n41) as well as a few low-
band channels (in band n71). All mid-band channels (with the
exception of TM n25 band) and mmWave high-band chan-
nels use the Time Division Duplexing (TDD) mode for their
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Figure 2: AV top-view with Sensors. Figure 3: PHY DL & UL Throughput. Figure 4: PHY DL & UL Latency.

5G services; whereas the TM n25 and low-band channels use
the Frequency Division Duplexing (FDD).
“Best” Achievable 5G Throughput. To gauge the feasibil-
ity of teleoperation in commercial 5G networks today, we
measure the “best” (max) 5G throughput today by conduct-
ing a series of repeated bulk data transfers using iPerf3 [42]
(see §4 for our detailed measurement campaign). These ex-
periments are conducted under mobility, where the AV is
traveling at 16 – 65 kilometers per hour (km/h) with stop-and-
go at intersections. Fig. 3 shows the DL and UL PHY layer
layer throughput performance. We see DL throughput is
significantly higher than the UL throughput for all oper-
ators (notice the different scale of y-axis for DL and UL).
Notably, while the average DL PHY layer throughput of AT,
TM, andVZ are 262.9Mbps, 526.7Mbps, and 570Mbps respec-
tively, their UL PHY throughput are 47 Mbps, 77.7 Mbps, and
71.8 Mbps respectively. Among all three operators, the best
(i.e., peak) DL and UL PHY layer throughput performance of
VZ (1639 Mbps and 174 Mbps) is due to its mmWave radio
band which is highly sensitive to obstruction [49]. Such sig-
nificant DL/UL asymmetry in throughput is, in a sense, by
design, largely coming from the TDD frame structure [28].
This is mainly because today’s commercial 5G networks (as
in 4G LTE networks) are “optimized” for mobile Internet
access, where the majority of applications are DL-centric.
This is problematic for UL-centric applications, such as tele-
operation.
Achievable 5G Latency. Inspired by [27, 29, 43], we quan-
tify the 5G PHY layer (“over-the-air” data) latency defined
as; the PHY DL + UL latency. In Fig. 4, we show the PHY
UL and DL latency for TM when stationary, walking, and
driving. Again, we see a clear DL/UL asymmetry in latency.
Mobility further worsens latencies. These DL/UL asymmetry
and mobility undoubtedly pose significant challenges for
teleoperation today. At the time of our study, TM achieves
the “smallest” average DL and UL latency probably due to its
5G-SA architecture [72]. Thus, unless otherwise mentioned,
our analysis mainly focuses on TM.
Feasibility of Teleoperation. In total, based on these AV
sensor data requirements and “peak” achievable 5G through-
put today, one could paint a picture of the feasibility (or

infeasibility) of teleoperation over commercial 5G today. Us-
ing TM as an example which boasts an UL throughput of
77.7 Mbps, streaming 4 camera streams plus one 64 beams
LiDAR with a 309 Mbps total UL throughput requirements
(see Table 2), would be unrealistic within the stringent la-
tency requirements (see Table 1). Furthermore, the actual
performance in the wild would vary dramatically under the
weight of all sensors streaming, highly diverse channel con-
ditions, network resource competition, and more.

3 RELATEDWORKS

5G Measurements. There is a plethora of in the wild mea-
surement studies in China [71], the U.S. [21, 29, 31, 32, 36, 47,
49–52, 56, 59, 60, 72, 73], and Europe [28, 30, 43, 44, 55]. All
characterize the performance of commercial 5G networks
from the user’s perspective across different layers in various
scenarios including mobility, when roaming abroad, with
high traffic load, and when streaming.
Most of these works have considered DL-centric appli-

cations. Relevant to our work, are studies that aim to un-
derstand UL-centric applications. For instance, [31, 32] (and
others) studied large data upload, camera sensor delivery,
and other killer-apps like AR/VR and Connected and Au-
tonomous Vehicle (CAV). All these studies revealed impor-
tant insights in terms of camera sensor data streaming over
commercial 5G networks, analyzing several factors like chan-
nel conditions, handovers, edge server placement for UL-
centric applications. However, these studies; i) did not con-
sider a realistic testbed equipped with several sensors includ-
ing LiDAR data streaming, down-sampling and voxel-based
compression techniques for real-sensor data delivery, and
ii) to a great extent failed to offer an in-depth discussion of
the intricate interplay of streaming multiple sensor data over
commercial 5G – for instance, highlighting the challenges
that several factors like BLERs, handovers, and channel con-
ditions while driving and taking sharp turns (≤90 turns)
presents for AV teleoperation today.
AV Teleoperation. Several studies [14, 21, 25, 53, 64, 65]
have also studied AV teleoperation over cellular networks.
Among them, [14, 21] are the most relevant. In our prelim-
inary work [21], we conducted an in-depth measurement
study collecting multi-modal vehicle sensor data, including
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video, LiDAR, and 5G networkmetrics over thousands of kilo-
meters using an emulation testbed. This analysis uncovered
challenges in supportingmulti-modal streams due to the vari-
able 5G throughput. [14] used WebRTC and OMNeT++ 5G
network simulator to improve QoE for a remote-controlled
ferry while sailing.
Although these past works advance the understanding

of AV teleoperation over 5G, i) they are still in the simu-
lation/emulation phase instead of real-world sensor data
streaming, and ii) there is a noticeable absence of cross-layer
analysis and the connection between network performance
and AV teleoperation QoE. An understanding of the under-
lying causes of AV teleoperation performance to establish a
causal relationship between network performance and QoE
has yet to be fully explored. Our paper contributes to the
understanding of AV teleoperation over live 5G networks.
We provide valuable insights to bridge the existing gap in
this area.

4 EXPERIMENTAL SETUP, TOOLS, AND

STREAMING QOE METRICS

4.1 Experimental Setup & Data Collection

Testbed and Measurement Platforms. In Fig. 1, we illus-
trate our experimental testbed. The AV is equipped with an
on-board computer to transmit sensor data. For remote vehi-
cle control stations, we rely on an Amazon AWS Cloud [2]
server deployed in an AWS Local Zone in the same geo-
graphical area as our AV. The AWS Local Zone is the second-
nearest “edge” server, with a Round-Trip-Time (RTT) of
36.60 ms±4.58 ms (using TM) from our AV.
Streaming System. We perform a series of live video, Li-
DAR, and C&C data streaming over 5G. i) In the UL, we
stream camera data (at 30 Frames Per Second (FPS) with a
single camera feed and a multi-camera merged option) us-
ing RTSP and WebRTC, both use Real-time Transport Proto-
col (RTP) over UDP.We choseWebRTC because, unlike RTSP
which does not perform any bitrate adaptation, WebRTC is
designed to achieve lower latency by incorporating conges-
tion control detection and bitrate adaptation mechanisms,
and currently being used by industry [45] for commercial
teleoperation. For LiDAR data streaming, we rely on the
Robot Operating System (ROS). The data generated by the
LiDAR is encapsulated as ROSmessages for streaming. ii) For
DL, we send C&C data using the Google Remote Procedure
Calls (gRPC) framework[34]. iii) To study the effect of data
compression on teleoperation, we utilize various video com-
pression algorithms on both RTSP andWebRTC, and employ
voxel-based downsampling of the LiDAR data.
Measurement Tools. Since our goal is to perform a cross-
layer analysis of AV teleoperation, we need to collect data
at the application layer and the 5G network. i) We rely on

Accuver XCAL [8] – a commercial grade tool which col-
lects detailed 5G RAN protocol stack information. ii) At the
application layer, using RTSP and WebRTC, we implement
logging on both the AV and teleoperator control server-side.
Furthermore, we rely on Wireshark [67] data, captured on
both the AV and server-side to compute the streaming QoE
and C&C delays metrics (See §4.2 and §5.4 respectively).
iii) We synchronize the clocks of the AV on-board computer
and the AWS server with Network Time Protocol (NTP) to
ensure correctness of clocks and timing information.
Data Collection Approach. Conducting experiments in
the wild using our research AV is not only very (cost and
labor) expensive, but is also very challenging. For this reason,
we first conduct a 1748 Km (1086-miles) cross-state driving
measurement campaign that spans 5 days, in which our AV
is driven by a human driver and we configured the on-board
computer to record the sensor data (see Fig. 21 in Appen-
dix 10.4). We then simultaneously stream the pre-recorded
sensor data (in the UL) and send the C&C data (in the DL)
over commercial 5G network. Since part of our goal is to
analyze how 5G networks affect teleoperation, to collect and
analyze 5G cross-layer data, we stream the sensor data via
several Samsung Galaxy S21 Ultra smartphones, tethered
to the on-board computer. This is because our commercial
grade 5G data collection tool, XCAL, which as of now only
works with Samsung phones.

Our methodology consists of the following steps: Step
1): We purchased contract SIM cards for streaming the AV
data through the on-board computer via the smartphones
to the AWS server. Step 2): We then select three driving
loops in Minneapolis that span 4-6 Km each and conduct
several months of live AV sensor data streaming over 5G net-
works repeatedly over several hours spanning different time
periods – i.e., morning and evening rush hours, as well as af-
ternoons, while collecting data across all layers. Step 3): Our
experiments involve simultaneously streaming the sensor
and C&C data while repeatedly driving in loops around the
city center and logging at both the AV and the remote vehicle
control station. Before each experiment (one complete loop
in our experiments), we not only ensure proper NTP time
synchronization, but also compute the time drift between
the on-board computer and the remote vehicle control server
station (1000 samples) and incorporate these time differences
in our analysis.
Measurement Summary. We conducted exploratory mea-
surements over commercial 5G networks using AT, TM, and
VZ. Altogether these measurements span about 6 months
consuming 100s of GBs of 5G data and driving around the
testing loops roughly about 70 times. While we studied many
operators, we chose to focus on using TM as it was the only
carrier with a primary 5G-SA 5G deployment [21, 72].
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Figure 5: Illustration of the Delay QoE Metrics in Cam-

era/LiDAR Streaming.

Table 3: Definition of QoE Metrics Terms Used

QoE Metrics

(One-Way UL)

Definition

Per-Frame
Network Delay

One-Way delay between first packet sent and
last packet received of a camera/LiDAR frame

Per-Frame
Total Delay

Per-Frame Network Delay (One-Way delay)
plus (+) “queueing” delay and frame encoding

and decoding delays
Video

Quality
SSIM and PSNR values

Perceptual Quality
Deviation

(SSIM of frame received at a given playback time
− SSIM of the expected frame) / SSIM of the expected frame

4.2 Streaming QoE Metrics

For teleoperation, ensuring that camera (and LiDAR) data are
delivered within a target latency deadline is critical in provid-
ing a human teleoperator with real-time situation awareness.
Since frames are the basic units for video encoding, decod-
ing, and playback, each frame should therefore be delivered
within a target deadline (e.g., 100 ms per Table 1). Thus, as
illustrated in Fig. 5 and summarized in Table 3, we introduce
the following Per-frame QoE metrics to quantify the UL (one-
way) camera/LiDAR data sensor streaming performance.
• Per-Frame (UL) Total Delay: The time from when the
camera/LiDAR frame is generated at the sender-side (i.e.,
vehicle) till it is completely received and decoded at the
remote teleoperation station and ready for playback.
•Per-Frame (UL) Network Delay: The time from when the
first packet of a camera/LiDAR frame is sent from the vehicle
till the last packet of this frame is received at the teleopera-
tion station side. Note that this delay excludes the time the
camera/LiDAR frame spends in the send buffer (known as
“queueing” delay) before transmission.
• Video Quality: We rely on the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) to
assess the video quality.

• Perceptual Quality Deviation: We introduce this metric
to capture the latency-visual-quality interplay, which is de-
fined as follows: assuming a constant latency 𝛿 determined
by the time the first frame is received and displayed1, the
perceptual quality deviation at the 𝑖th playback time is the
ratio of the absolute value of the difference between the SSIM
value of the actual video frame displayed at this time and the
expected video frame (i.e., the 𝑖th frame) that should have
been displayed to the SSIM of the 𝑖th frame.

For the LiDAR data, we use the term frame to encompass
the 3D point cloud data generated from a single sensor sweep
of a spinning LiDAR sweep, e.g., a 360◦ sweep. The per-frame
total and network delay metrics also apply to LiDAR data.
On the other hand, the perceptual quality deviation do not
directly apply to LiDAR data. This is because, the LiDAR data
is not displayed to the remote human operator. Instead, the
LiDAR data will be used for 3D environment representation,
object detection and recognition – often combined with the
camera data as we also analyze later in §5.3.

5 APPLICATION LEVEL PERFORMANCE

Building on the streaming QoE introduced earlier, this sec-
tion examines the performance of key sensor streams over
commercial 5G networks and the delay of C&C operations.
5.1 Streaming Single Front Camera

We first consider streaming the front-central camera data
feed – the most crucial data feed for providing real-time situ-
ational awareness to the teleoperator. Using TM, we evaluate
two scenarios: Case 1: We stream the raw MJPEG camera
feed using RTSP. Case 2: To evaluate the effectiveness of
data compression for teleoperation, we consider several com-
pression schemes and stream the compressed camera feed
using both RTSP andWebRTC. We repeat these experiments
multiple times in our loops.
Case 1: Streaming Raw Camera Feed. Recall from §2 that,
for teleoperation to be feasible, the E2E UL delay, i.e., the
Per-Frame Total Delay should be below 100 ms. We consider
the base case (i.e., streaming the front-central camera feed)
and quantify the Per-Frame Total Delay to understand the
feasibility of teleoperation over commercial 5G today.

(UL) Per-Frame Total Delay. Fig. 6a shows the (UL) Per-
Frame Total Delay. We make the following observations:
(1) The minimum Per-Frame Total Delay exceeds 50 ms, with
29.2% of frames surpassing the 100 ms deadline – of which
11.4% experience delays greater than 500 ms. (2) Notably, the
Per-Frame Total Delay progressively worsens over time (i.e.,
accumulates) – a phenomenon we refer to as the cumulative

1If 𝑡1 is the time the first frame is captured and encoded at the AV, 𝑡1 + 𝛿 is
then the time the first frame is received and displayed at the teleoperation
station, and 𝑡𝑖 + 𝛿 is the time that the 𝑖th frame is expected to be displayed.
If by this time, the 𝑖th frame is not received, the previous frame is replayed.
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delay effect (see Fig. 6b top figure). This is because the AV’s
camera data begins to queue in the UL buffer. (3) The queuing
is triggered by a domino effect due to the 5G network’s inabil-
ity to transmit data to the teleoperation station. This effect is
captured by a corresponding increase in Per-Frame Network
Delay, also illustrated in Fig. 6b bottom plot. The Per-Frame
Network Delay (partially) provides a clearer justification for
the critical role of 5G networks in teleoperation.
(UL) Per-Frame Network Delay. Fig. 6c shows the me-

dian Per-Frame Network Delay is around 73.5 ms, which is
28 ms higher than the maximum 5G network delay thresh-
old required for teleoperation (see Table 1). However, the
distribution has a long tail, with 72.3% of the frames with
delay between 50 and 100 ms, 16.2% with delay between
100 ms and 500 ms, and 8.7% with a network delay larger
than 500 ms.

Perceptual Quality Deviation. Lastly, we quantitatively
understand the Perceptual quality deviation in Fig. 6d – The
cumulative delay effect has a proportionally negative impact
on the Perceptual quality deviation. In other words, the video
frames are progressively delayed, degrading the operator’s
ability to maintain situational awareness and potentially
causing confusion, which can lead to delayed reactions from
the teleoperator.

Case 2: Streaming Compressed Camera Feed. Now we
ask the question, can video data compression techniques help
teleoperation? – In other words, can compression help favor
the majority of the frames to arrive within the latency require-
ments for Teleoperation? What are the tradeoffs? To answer
these questions, we configure H.264 and H.265 with RTSP
and VP8[70] and VP9[69] in WebRTC to stream the front-
camera data. Fig. 7 and Fig. 8 show the latency performance
with RTSP and WebRTC respectively. Generally, compres-
sion reduces both the Per-Frame Total and Per-Frame Network
Delays. For instance, with H.265 and RTSP, only 0.487% of
the frames experience a Per-Frame Total Delay greater than
100 ms, and 17% of the frames experience a Per-Frame Net-
work Delay exceeding 45 ms, the target latency requirements
for teleoperation. Nonetheless, such tail latency performance
is still not ideal, as a critical safety situation that requires
timely human teleoperator intervention may occur during a
concentrated period of the tail events with bad 5G network
conditions. Additionally, we see that increasing compres-
sion reduces delay at the expense of lower video quality
(see Fig. 7c). Notably, the median Per-Frame Total and Per-
Frame Network Delays achieved with WebRTC are 30.47%
and 50.81% lower when compared with RTSP. This is due to
the effectiveness of the network adaptation and congestion

7



Rostand A. K. Fezeu, Jason Carpenter et al.

control mechanisms present in WebRTC but absent in RTSP,
which is the main focus of our investigations later in §7.

5.2 Streaming Merged Cameras

To provide complete real-time situational awareness, it is not
sufficient to only stream the data from the front-view camera;
the side-views provided by the left-front and right-front cam-
eras are also important, especially when the vehicle needs to
change lanes or make turns. We therefore also consider the
streaming performance of the merged video streams from
all three cameras (see Fig. 21 in Appendix 10.4). Intuitively,
the Per-Frame Total and Per-Frame Network Delays when
streaming data from 3 cameras will be worse than the sin-
gle camera, even with compression. For completeness, we
include these results for both RTSP and WebRTC in Fig. 24
and Fig. 22 in Appendix 10.4. Overall, for RTSP, 45% of the
frames violate the 45 ms Per-frame Network delay deadline
and 13% violate the 100 ms Per-Frame Total delay deadline.
While for WebRTC, 48.31% of the frames will violate the Per-
Frame Network Delay and 3.64% violate the Per-Frame Total
delay requirement.

5.3 LiDAR Data Streaming

To stream the LiDAR data, we built a custom client-server
UDP-based application that packetizes the ROS bag data for
streaming over 5G. In these experiments, we use the term
frame to encompass the 3D point cloud data generated from
a single round of LiDAR sweep, e.g., a 360◦ sweep, and quan-
titatively analyze the Per-Frame Network Delay. As shown
earlier in Table 2, the UL throughput required to stream the
64 and 128 beams LiDAR data is 277 Mbps and 307 Mbps,
respectively. Given these throughput requirements, we fur-
ther explore two approaches to reduce LiDAR data before
streaming over 5G.
1) Voxel-based Downsampling. Using downsampling
with voxel sizes of 0.13 and 0.53 (cubicmeters) of the 64 beams
LiDAR data, we can reduce the throughput requirements
from 277 Mbps down to about 121.4 Mbps and 50.9 Mbps,
respectively – the former is still significantly higher than the
average UL throughput of the three operators. In contrast,
the latter is lower than that of TM and VZ, but still slightly
above that of AT.
2) LiDAR Compression. We chose Google’s Draco [33]
because it can reduce the LiDAR data to a third of its original
size, and is faster than other LiDAR compression tools we
have tested, like Octree [40].
Results. We find the Per-Frame Network Delay of the 64
beams LiDAR data streaming is very poor, even with down-
sampling, as shown in Fig. 9. With 0.53 voxel size, the median
network delay is 2 seconds, whereas for one raw frame, the
median network delay is about 6 seconds, making it nearly
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infeasible to stream high-resolution LiDAR data in real-time
over 5G networks. We omit the results for streaming 128
beams and multiple LiDAR streams, as they will obviously
perform worse. With Draco, although we can significantly
reduce the LiDAR data to one-third of its original size, the
caveat is that the average compression and decompression
times are approximately 47 ms and 15 ms, respectively. In
contrast, voxel downsampling takes about 14 ms with no
processing required at the remote teleoperation station. The
large additional processing overhead associated with Draco,
combined with network delays, makes it less suitable for AV
teleoperation. Further downsampling of LiDAR data is not
beneficial, as it leads to performance degradation in down-
stream AI tasks, such as object detection and recognition.
For interested readers, we provide a detailed discussion of
the impact of compression for downstream AI tasks for AV
in Appendix 10.5.

5.4 Command & Control (C&C)

As shown in Fig. 1, the test vehicle used in this study is
equipped with a DBW (Drive-By-Wire) system, which en-
ables it to read and write CAN (Controller Area Network)
messages. The operator remotely controls the vehicle us-
ing the Logitech simulator platform at the remote station.
Communication between the simulator and the vehicle is
established through gRPC communication protocol, ensur-
ing efficient and low-latency data transmission over the
5G network. gRPC’s communication model achieves low-
latency data transmission by minimizing the use of exten-
sive error-checking mechanisms and connection handshakes.
This makes it particularly well-suited for vehicle C&C trans-
missions, where real-time responsiveness is prioritized over
guaranteed delivery. Control commands, including steering,
acceleration, and braking, transmitted from the remote sta-
tion were first converted into low-level commands on the
vehicle side before being executed by the vehicle’s control
systems (See Appendix 10.3 for more details). Fig. 10 shows
the DL C&C compared to the UL Per-frame Network delays.
As per the teleoperation delay requirements in Table 1, we
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Resource blocks Buffer status Handover events Avg bitrate MCS CQI

Figure 11: 5G Impact on Per-Frame (UL) Network Delay for Teleoperation. Using RTSP to Stream:

(a) Single (front) Camera, and (b) Merged (front, left, & right) Cameras

find that 64.29% and 37.20% of the C&C messages were de-
livered within the application and network requirements,
respectively, with a median delay of 17.29 ms.

Implications & Key Takeaways. Our analysis reveals that
streaming a single camera’s data over a commercial 5G net-
work is feasible. However, situational awareness requires
streaming multiple cameras and LiDAR data, which renders
teleoperation infeasible. While compression improves fea-
sibility, it degrades visual quality and impairs downstream
AI tasks (See Appendix 10.5). Additionally, analysis of the
streaming QoEs highlights the critical role of 5G in teleoper-
ation. We next examine 5G’s impact on ToD in details.

6 5G IMPACT ON AV TELEOPERATION

Minimizing delay is crucial for teleoperations. However, as
shown earlier, Per-frame network delay often exceeds the
45 ms or 100 ms requirements (see Table 1) and is unstable.
We analyze the 5G dynamics to identify the causes.

6.1 What 5G Factors Affect Teleoperation?

As the AV moves around, the Base Station (BS) (i.e., next
Generation Node B (gNodeB)) needs to allocate network
resources for UL sensor data transmissions. The gNodeB
considers several factors when allocating resources. Among
many others, channel condition assessments play a crucial
role. The AV reports its channel conditions to the network
using a Channel Quality Indicator (CQI) value, which ranges
from 1 to 15, where 15 indicates excellent channel condi-
tions. The network, in turn, uses this CQI value to determine
which Modulation and Coding Scheme (MCS) to use for the
impending transmission [See §5.1.6 in [9]]. Generally, a high
CQI value results in a higher MCS value – if there is suffi-
cient data buffered to warrant it [29]. This effect is evidenced

by the Buffer State Report (BSR) of the AV being always full.
Additionally, HOs are triggered to switch between Base Sta-
tions (BSs) when the AV moves around, which can result
in packet loss and retransmissions – i.e., Block-Level Error
Rates (BLERs).
5G Cross-layer and E2E Correlation Analysis. To visu-
ally illustrate the impact of 5G on Per-frame network delay,
in Fig. 11(a) and Fig. 11(b), we show the time-series plots of
the 5G dynamics, cross-correlating them with the AV QoE
Per-frame network delay for about 7.5 minutes while driving
in a loop and streaming a single front camera and merged
camera feeds respectively over TM’s 5G-SA network. The
first row i) and the second row ii) plot the time series of
Per-frame network delay and 5G UL PHY layer throughput,
respectively, with Handover (HO) events represented using
green dotted lines in the second row. Rows iii) to v) show
several key 5G parameters: iii) UL CQI and MCS; iv) PHY
BLERs and Packet Data Convergence Protocol (PDCP) loss
rates; and v) the UL RBs allocated and the AV BSR (right
y-axis).
We make the following observations: (1) When the PHY

layer throughput drops dramatically (e.g., 250 -280 secs in
plot ii) of Fig. 11(b)), the Per-frame network delay increases
significantly (from 0.1 seconds to 4 seconds), and can last
more than 30 seconds. (2) HOs typically occur in regions
where there is a noticeable spike (i.e., increase) in the Per-
frame network delay. Not all HOs cause significant disruption;
some cause extended periods of high delay, with values rang-
ing from hundreds of milliseconds to several seconds, and
occasionally lasting tens of seconds. A particularly inter-
esting observation is the compounded impact of multiple
HOs occurring within a short time window. For instance,
in plot ii) of Fig. 11(a) around 250 seconds and in plot ii)
of Fig. 11(b) around 270 seconds, the compounded effect of
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several HOs results in much more severe delays than the
effect of a single HO during the same period – this is a key
point that we explore further in §6.2. (3) BLERs also increase
Per-frame network delay, although the effects are less pro-
nounced, as we quantify this later (see §6.2). HOs, and to
a lesser extent, BLERs, can lead to the AV Medium Access
Control Layer (MAC Layer) buffer build-up, as indicated by
the buffer status (red curve, right y-axis) in plot v). (4) In
single camera streaming, except in the beginning and the
end, the number of RBs reaches 20 per second. When the AV
MAC Layer buffer builds up, more RBs are allocated as ex-
pected – despite poor channel conditions (i.e., low CQI/MCS).
In contrast, the merged cameras require significantly higher
bit rate, the AV MAC Layer buffer consistently remains full,
necessitating the allocation of at least 32 RBs (see plot v)
in Fig. 11(b)).
The above cross-layer correlation analysis establishes a

clear connection between the 5G network dynamics impact
on the QoE of AV teleoperation. However, the underlying
causes of AV teleoperation performance, and the ability to
quantitatively establish a causal relationship between key
5G factors and the AV QoE is yet to be fully explored. Next,
we aim to assess and quantify the precise impact of these
factors.

6.2 Quantitative Analysis of the Impact of

Key 5G Factors on AV Teleoperation

Radio Resource Allocations. The radio resource alloca-
tion does not have a direct effect on the observed Per-frame
network delay (Fig. 11(a) & Fig. 11(b)). Particularly, channel
conditions (i.e., CQI) do not appear to affect the number of
UL RBs allocated by the BS, in contrast to the MAC Layer
buffer status. HOs, on the other hand, do sometimes reduce
the number of RBs allocated – this is not too surprising.
However, when multiple AVs simultaneously stream video
feeds, competition for radio resources affects the number of
RBs allocated per vehicle, therefore affecting the Per-frame
network delay, as we later analyze in §8.
5G Channel Conditions. To quantitatively understand
how CQI impacts Per-frame (UL) network delay, we stream
the merged video camera data, which fills the UL buffer

(to minimize the impact of data on the network delay) and
quantify the direct effect of CQI. We categorize the CQI
values into three bins: 𝐶𝑄𝐼𝑙𝑜𝑤 = (6, 9] (“poor”), 𝐶𝑄𝐼𝑚𝑒𝑑𝑖𝑢𝑚 =
(9, 12] (“fair”), and 𝐶𝑄𝐼ℎ𝑖𝑔ℎ = (12, 15] (“good”). Fig. 12 shows
the box plot of the Per-frame network delay for each CQI bin.
We observe that under poor channel conditions, the average
Per-frame network delay is 770 ms, which is significantly
higher than the 400 ms observed under good conditions,
representing a 92.5% increase.
BLERs. The 5G PHY/MAC Layer employs the Hybrid Au-
tomatic Repeat reQuest (HARQ) to recover from bit errors
and failed transmissions. Fig. 13 shows the effect of BLER
on the Per-frame network delay for a single camera stream-
ing. The delay increases by about 55.7% when transitioning
from 0-5% BLER to 10+% BLER, rising from 0.61 seconds to
0.95 seconds. This increase is due to the higher number of
PHY/MAC Layer retransmissions.
Handovers (HOs). While previous works [31, 36, 71] have
shown that HOs negatively affect the throughput and latency,
our goal here is to quantitatively understand their impact
on AV teleoperations, specifically the UL Per-frame network
delay. In the case of intra-RAT (radio access technology)
HOs (i.e., 5G→ 5G), we focus on A3 HOs observed 97.03%
of the times in our experiments; (1) A3 HOs – defined as the
Reference Signal Receive Power (RSRP) of the neighboring
cell becomes an offset better than the serving cell. (2) A3 Ping-
PongHOs – defined as, multiple HOs between cell ids 𝑃𝐶𝐼𝑛−1,
𝑃𝐶𝐼𝑛 , and 𝑃𝐶𝐼𝑛+1 happening within a short time window,
15 seconds in our analysis in which 𝑃𝐶𝐼𝑛−1 = 𝑃𝐶𝐼𝑛+1.

A3 HOs Impact on AV. For A3 HOs, we are interested
in understanding the Per-frame network delay (5 seconds)
before, during, and (5 seconds) after a HO. Notice that the
ΔPer-frame network delay before and after a HO quantifies
the improvement due to a HO. Fig. 14 shows the Per-frame
network delay (left axis) and the corresponding RSRP values
before, during, and after a HO without HOs failures. See §7
later for the effect of HO failures. Not surprising, ΔRSRP
defined as 𝑅𝑆𝑅𝑃𝑎𝑓 𝑡𝑒𝑟 − 𝑅𝑆𝑅𝑃𝑏𝑒 𝑓 𝑜𝑟𝑒 a HO is positive. This is
a direct consequence of the HO decision. Importantly, al-
though the result of HOs (i.e., after) generally improve the
Per-frame network delay by about 7.83% in our experiments
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(going from 0.046 secs to 0.0424 secs), their impact (i.e., dur-
ing) is far more detrimental, causing the Per-frame network
delay to increase (i.e., worsen) by about 86.04% (going from
0.048 secs up to 0.0893 secs).

Ping-pong HOs Impact on AV. We find that ping-pong
HOs generally occur when driving in a loop, particularly
when turning. To illustrate, we compare HOs when driving
in a loop and on a straight line. Fig. 16 shows the cell IDs (i.e.,
PCIs) with unique colors the AV is connected to when driving
in a loop (≈4.2Km) compared to a straight line (≈5.6Km).
Notice that, unlike when driving on a straight line, there
are zones of ping-pong HOs (i.e., unnecessary HOs) when
the AV is turning. For instance, the top-zoomed plot on the
left of Fig. 16a) shows that the PCIs the AV is connected to
changes from PCI:281 → PCI:673 → PCI:281 within a short
time window (15 seconds). The compounded effect of this
pong-pong HOs causes a 56-85% in the Per-frame network
delay, presenting a significant problem for AV teleoperations.
Implications & Key Takeaways. Our analysis points to
key 5G factors—HOs (unnecessary ping-pong HOs & A3
HOs), 5G channel conditions, and BLER—which need to be
addressed for AV teleoperation on commercial 5G networks.
Practically, one could leverage vertical application infor-

mation like the vehicle location, speed, and trajectory to
i) design a proactive, trajectory-driven HOs mechanism to
minimize ping-pong HOs, particularly when turning, and
ii) implement a mobility-aware link adaptation (e.g., MCS se-
lection) mechanism to reduce BLER. Such approaches could

make AV teleoperation feasible. Also, understanding adap-
tation strategies at both the network and application layers
could be essential – the major focus of our next section.

7 5G IMPACT AND NETWORK &

APPLICATION ADAPTATION FOR TOD

Here, we use WebRTC as a key use case to study how 5G
RAN dynamics impact feedback-based congestion control al-
gorithms for real-time sensor data streaming for AVs. Specif-
ically, we show that the 5G channel fluctuates at timescales
much smaller than the congestion control feedback delay.
PHY Impact on WebRTC Adaptation Mechanisms. We
stream the front-camera to understand how 5G PHY layer
dynamics influence WebRTC decision-making. In Fig. 17,
we cross-correlate the PHY layer factors with the WebRTC
performance. Plot (i) shows 5G PHY layer throughput and
RB allocation, and plot (ii) shows WebRTC’s target bitrate.
Plots (iii) and (iv) illustrate channel conditions – as indicated
by the CQI, MCS, and Per-Frame (UL) Network Delay.

We see that there is a clear lag (i.e.,∼10 seconds) inWebRTC’s
decision – to explain, in the first 30 seconds, the initial grad-
ual increase in the PHY layer throughput is matched by a
corresponding graduate increase in the WebRTC’s target
bitrate. Between 30 and 40 seconds, the PHY layer through-
put suddenly drops within milliseconds as a result of lower
RB, despite acceptable CQI and MCS values. This sudden
drop causes the video data to queue up in the 5G UL chan-
nel, leading to a sharp increase in Per-Frame Network Delay
(0.1–0.22 s) approximately 10 seconds later. At this point,
WebRTC detects congestion and reacts by reducing the tar-
get bitrate from 40 to 15 Mbps, which in turn lowers the
frame rate. This effect is further amplified by HOs, both
with and without failures, as shown in the inset plots at the
bottom of Fig. 17. Each inset displays the Per-Frame (UL)
Network Delay along with HO start and end times. HO fail-
ures result in retransmissions at the PDCP sub-layer due to
packet loss, increasing the Per-Frame (UL) Network Delay
by approximately 20–33%. Notably, ping-pong HOs have an
even greater impact, as seen in the larger spike in network
delay in Fig. 17 plot (iii).
Need for “better” Network Adaptation Mechanism. To
further illustrate the interactions between 5G andWebRTC’s
decision-making process, we use the same trace and plot the
cumulative throughput of the PHY layer and target bitrate
selected by WebRTC in Fig. 18. Initially, WebRTC underuti-
lizes the available 5G throughput (area A in Fig. 18), as the
target bitrate remains below the network’s capacity, leading
to wasted resources. This occurs because WebRTC’s (Google
Congestion Control) (GCC) algorithm relies on Real-time
Transport Control Protocol (RTCP) feedback, which oper-
ates on much larger timescales (≥2 seconds by default) than
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the rapid variations in 5G PHY layer throughput (0.5ms [29]).
As a result, WebRTC fails to immediately adjust its target
bitrate, causing a mismatch that leads to queuing delays and
congestion as data accumulates in the buffer. In area C, as
the 5G throughput decreases, WebRTC continues increasing
its target bitrate. Again, due to the delayed feedback, this
leads to overutilization (area B), causing spikes in Per-Frame
(UL) Network Delay. These mismatches highlight the ineffi-
ciencies in the application layer (WebRTC) to adapt to 5G’s
fast dynamics, underscoring the need for more responsive
and precise network adaptation mechanisms.

Implications & Key Takeaways. The above analysis con-
firms that application layer-based adaptation and congestion
control mechanisms are not sufficient to cope with the “fast”
5G channel variability caused by mobility in AV teleoper-
ations. The 5G PHY layer metrics provide another critical
dimension to detect problems on the 5G network and react
quickly, reducing the UL delay. Overall, it is crucial to design
applications to be “5G-aware”.

8 FURTHER DISCUSSION

Based on our findings, we conclude our work by discussing
the effect of multiple AVs operating over commercial 5G net-
works. The goal is to shed light on possible future directions.

8.1 Effect of Multiple AVs

To illustrate the impact of multiple vehicles competing for
radio resources, we experiment with two vehicles (users).

These results can be generalized to scenarios with more
vehicles. To stress the network, both vehicles stream front
64-beam LiDAR data at 277 Mbps. The top plot in Fig. 19a
shows the number of PHY layer RBs allocated when only one
vehicle is streaming. The middle and bottom plots show the
RB allocation when both vehicles stream simultaneously. As
expected, RBs are nearly halved when two vehicles share the
network. This resource competition significantly delays sen-
sor data delivery, as shown in Fig. 19b. The CDF of Per-Frame
(UL) Total Delay reveals that the median delay more than
doubles. Specifically, transmitting the entire LiDAR dataset
takes 15 minutes for a single user but nearly 30 minutes for
two. More competing users would further degrade the delay
performance.

8.2 Leveraging Multiple Operators

When multiple 5G operators are available, we can leverage
them to support AV teleoperation. One approach is to utilize
MPTCP or MP-QUIC [53] by splitting packets (of each frame)
across multiple operators. One issue with this approach is
that when one of the operators experiences poor channel
conditions, it affects the entire frame, thereby prolonging
the Per-Frame (UL) Total Delay. An alternative approach is to
perform operator switching – namely, utilizing one operator
for streaming at any given time, and switching to another
operator when the UL throughput of the first operator is
poor. This strategy can especially help alleviate the poor
performance caused by HOs, poor CQI, or poor coverage of
a single operator.
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Figure 20: Multi-Path Streaming for Single Video

In Fig. 20, we provide an example to illustrate the per-
formance of operator switching. The top plot (i) shows the
PHY layer throughput of TM vs. VZ over time. The second
and third plots show the benefits of operator switching: the
second plot (ii) shows the Per-Frame Total Delay and the third
plot (iii) shows the Per-Frame network Delay. The fourth plot
(iv) indicates the operator being used for streaming the cur-
rent individual frames. We can observe that the Per-Frame
Total Delay is consistently below 100 ms, except in situations
where a sudden throughput drop leads to incorrect band-
width estimates, making it a promising approach to consider
for teleoperation.
Impact of Data Compression on Downstream AI Tasks.

Sensor data received from AVs may also be used for object
detection and tracking to help alert the human teleoperator.
We also study the impact of data compression on downstream
AI tasks. The details can be found in Appendix §10.5.

9 CONCLUSION

We conducted – to the best of our knowledge – a first feasibil-
ity study of AV teleoperations over commercial 5G networks
in a real-world urban setting, analyzing cross-layer and E2E
performance. We distinguish our work from previous studies
and introduce per-frame level QoE metrics to elucidate the
impact of key 5G PHY layer dynamics – CQI, BLERs, HOs,
and RBs allocation – on E2E latency and tail performance.
Our study reveals the challenges posed by 5G networks and
the limitations of existing sensor data streamingmechanisms.
While adaptive frame dropping and multi-operator strate-
gies improve tail latency, they cannot fully mitigate poor
channel conditions and frequent handovers, especially when
driving in a loop and making turns. New 5G features, such
as network slicing [1], can provide resource provisioning
and prioritized QoE, but do not resolve the fundamental lim-
itations of the 5G network. We advocate for a co-designed
approach integrating wireless networks, edge/cloud systems,

and applications to minimize latency and make AV teleoper-
ations feasible over live commercial networks.
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10 APPENDIX

10.1 Ethics

This study was carried out by the research team, volunteers,
and paid graduate students. No personally identifiable in-
formation (PII) was collected or used, nor were any human
subjects involved. Our study complies with the customer
agreements of all 5G operators. This work does not raise any
ethical issues.

10.2 Experimental Testbed & Methodology

Our CAV Sensors. We measured the data footprint of sev-
eral sensors attached to our CAV to establish a baseline
for the network support required by a teleoperated vehi-
cle. These footprints are shown in Table 4. We focused on a
128-beam LiDAR, the front-facing FLIR camera, and the com-
bination of front, left, and right cameras for merged video
experiments, as these sensors are the primary contributors to
teleoperation tasks. Their critical role in perception, coupled
with the high volume of data they generate, necessitates
significant network throughput. To collect data, we used
ROS2 Humble to record both camera and LiDAR outputs,
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Table 4: Our CAV Sensors with Throughput Require-

ments and Default Sample Rate

Sensor

Type

Sensor

Model

Raw Data

Rates(Mbps)

Raw Data

Rates(Frames)

GPS Novatel PWRPAK7-E2 GNSS 0.29 NA
IMU 2 OS1-16 and 1 OS1-64 Ousters 0.038 100
IMU Novatel PWRPAK7-E2 GNSS 0.33 NA

Odometry Novatel PWRPAK7-E2 GNSS 0.28 NA
Video Front-FLIR Blackfly S GigE RGB 24.994 30
Video Right-FLIR Blackfly S GigE RGB 25.467 30
Video Left-FLIR Blackfly S GigE RGB 37.749 * 30
Video Front-FLIR ADK Thermal 4.561 15
LiDAR Robosense Ruby Plus 128 125 10
LiDAR Right-Ouster OS1-16 63.411 10
LiDAR Left-Ouster OS1-16 64.278 10
LiDAR Front-Ouster OS1-64 276.814 10
RADAR Front-Conti ARS 408 1.4 NA
RADAR Rear-Conti ARS 408 1.71 NA

Figure 21: Merged Frames from Front Left, Front, and

Front Right Camera.

leveraging manufacturer-provided SDKs such as Spinnaker
for the cameras and RSlidar SDK for the LiDAR systems.
Testbed Our testbed consists of a laptop (representing an
on-board unit (OBU)), a USB-tethered smartphone (serving
as the 5G radio), and a cloud-hosted server (functioning
as our driver station/location). We utilize WebRTC and two
Chrome browser instances, each with Python logging servers
co-located on each side, to capture logs. Additionally, we use
OBS to stream our CAV camera data as a webcam for use
in the WebRTC client. We record the resulting video on the
server side using JavaScript recording libraries.

10.3 Teleoperation Command & Control

In our system, we utilize gRPC, which is an industry standard
C&C framework for teleoperation control. The underlying
system utilizes HTTP/2 served over TCP to facilitate com-
mand transmission. We record commands from a Logitech
simulator platform and replay them over gRPC to mimic
a real set of drive commands. This provides a reasonable
simulation of drive commands delivered over the network
simultaneously with our video streams. This provides a full
picture of simulated driving.

10.4 Teleoperation Latency Performance

We include in this section some additional results and con-
text for our video streaming latency experimentation. Fig. 21
illustrates a frame from the merged video stream combin-
ing inputs from the front-left, front, and front-right cam-
eras of the CAV vehicle. This merged video is transmitted
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Figure 22: WebRTC QoE for merged-video streaming

over a 5G network to the remote vehicle control station,
enabling comprehensive situational awareness for teleopera-
tion. The results from our experiments with merged-video
streaming using VP8 codec are illustrated in Fig. 22. We ana-
lyze WebRTC metrics for large-throughput video streaming.
Fig. 22(a) depicts the per-frame total delay which remained
below the 100 ms threshold for about 90% of the frames.
Fig. 22(b) focuses specifically on per-frame network delay,
around 20% of the frames remained below the 45 ms thresh-
old, and around 65% of frames were in the range of 50-100 ms.
The total per-frame delay was slightly higher due to addi-
tional processing overhead, yet still largely within acceptable
limits for real-time applications.

Fig. 24 evaluates the QoE for merged-video streaming us-
ing different video compression methods, including MJPEG,
H.264, and H.265. Fig. 24(a) compares the one-way total delay
for each codec, showing that both H.264 and H.265 achieved
lower delays compared to MJPEG, with most values below
the 100 ms threshold. Fig. 24(b) analyzes the per-frame net-
work delay for these codecs, where H.265 demonstrates the
most consistent performance, while H.264 exhibits slightly
higher variability. Lastly, Fig. 24(c) evaluates the perceptual
quality deviation through the Structural Similarity Metric
(SSIM), showing that H.264 and H.265 maintain higher and
more stable quality compared to MJPEG. These findings in-
dicate that H.264 and H.265 are more suitable for real-time
teleoperation streaming due to their balance of low delay
and high video quality.

10.5 Impact on Downstream AI Tasks for

AV Teleoperations

The quality of video not only affects human teleoperator per-
ception, but also the efficacy of downstream AI tasks such as
detecting and recognizing objects. For example, the detected
objects in the video are often displayed with a bounding box
and a label to alert the human teleoperator and assist them
in timely decision making. With its 3D representation and
depth information, LiDAR can enhance the object detection
and recognition accuracy. We now evaluate the impacts of
data (video/LiDAR) compression on the efficacy of objection
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Figure 23: Object Detection with Different Data Modalities and Compression Qualities.
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Figure 24: Merged-videos streaming QoE performance

detection and recognition. We also examine the benefit of
combining both video and LiDAR data in such tasks.

To assess the effects of distortion, we utilize the pre-trained
state-of-the-art object detection models: YOLOv8 [57] and
FocalFormer3D [22]. As an example, Fig. 25 shows a repre-
sentative video frame annotated using YOLO: compared to
Fig. 25(a), one car is not detected in Fig. 25(b), due to the
lower quality of H.265 encoded video. In Fig. 23(a), we com-
pare the number of objects detected usingMJPEG, H.264, and
H.265 video. We see that compared with MJPEG, H.264 and
H.265 reduce the number of object detections due to lower
video quality. In particular, while H.265 can significantly re-
duce the bit rate requirement (e.g., from using 87.97 Mbps
to 4.946 Mbps), this comes with a significant penalty in the
efficacy of downstream object detection and recognition.
To quantify this impact, we conduct experiments using

the nuScenes dataset [19] with ground-truth labels for var-
ious objects of interest. Besides MJPEG, H.264, and H.265
for video compression, we employ a downsampling tech-
nique with voxel sizes ranging from 0.1𝑚3 to 1𝑚3 for LiDAR
data. Fig. 23(b) and Fig. 23(c) present the mean Average Pre-
cision (mAP) for all classes and four selected objects types
(cars, pedestrians, bicycles, and traffic cones) using video-
only and LiDAR-only mono-modality 3D object detection,
respectively. Due to the absence of explicit depth informa-
tion, camera-only detection performs less effectively than
LiDAR, with 0.32 mAP score over all classes, while LiDAR
achieves 0.70. We can see that lowering the quality of video

(a) MJPEG Frame Yolo De-

tection

(b) H.265 Frame Yolo

Detection

Figure 25: Video Compression Codec Effect on ML De-

tection

and LiDAR data has an evident effect on 3D object detection
and recognition tasks. It is worth noting that such effect is
not linear. For example, H.265 degrades the overall perfor-
mance of video-based object detection far more aggressively
than H.264. LiDAR-based detection only experiences a more
pronounced decline only after reaching a voxel size of 0.5𝑚3.
Furthermore, the effects of data compression differ based on
object classes. For example, with low H.265 video quality,
bicycles become nearly undetectable. Similarly, traffic cones
become undetectable in downsampled LiDAR data with a
voxel size of 1𝑚3.

We further explore the impact of data compression on
multi-modality 3D object detection using both video and
LiDAR data. The mAP results for all classes are shown in
Fig. 23(d). Multi-modality detection outperforms camera-
only and LiDAR-only detection, with 171.0% and 39.5% im-
provements, respectively. The object detection degradation
due to LiDAR compression reduces by 2.8%-18.6% when com-
bined with video data. In addition to the better object de-
tection performance, the combination of compressed LiDAR
data with 0.5𝑚3 voxel size and H.265 video require 25.2%
less bandwidth than MJPEG encoded video frames alone
(65.76 Mpbs vs. 87.97 Mbps). In summary, using compression
and bit rate adaptation may help reduce the per-frame delay
(thus increasing the probability of meeting a target deadline),
however their impacts on efficacy of downstream AI tasks
must be taken into account. Carefully striking the balance
in latency and video quality is called for.
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