2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) | 978-1-7281-9586-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/CCGrid51090.2021.00083

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

VeerEdge: Towards an Edge-Centric IoT Gateway

Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J. Salo, Zhi-Li Zhang
Department of Computer Science, University of Minnesota - Twin Cities
{dayal007,fezeu001,varya001,salox049,zhang089 } @umn.edu

Abstract—As the plethora of Internet of Things (IoT) devices
gradually make their way into our lives, several Cloud Service
Providers (CSPs) have developed IoT gateway platforms (SDKs)
that solely connects IoT devices to their respective cloud. Such
gateways have 1) cumbersome IoT device configuration; 2)
inflexible IoT data managements; and 3) support no/little cross-
vendor edge computation and cloud analytics. We term these
commercial gateway SDKs as cloud-centric. In this paper, we
study the state-of-the-art vendor-locked IoT Gateway solutions
and approaches and propose an edge-centric paradigm through
an evolutionary framework, dubbed VeerEdge for developing IoT
gateways. We leverage computing and storage capabilities at the
network edge for edge-based device & IoT service management
and data processing. We exploit availability of multiple cloud
services for “best” IoT data analytics. Evaluation results show
that VeerEdge achieves this with negligible overhead in terms of
latency, CPU and RAM usage when compared to state-of-the-art
industrial IoT gateways.

Index Terms—IoT devices, IoT Gateway SDK, IoT cloud.

I. INTRODUCTION

Many Internet of Things (IoT) systems are “stovepipe
systems”: they are closed, end-to-end, sensor-device-to-cloud-
application systems that operate independently of each other.
These stovepipe systems are unable to interact directly with
each other, or share most resources. In this paper, we describe
a new class of IoT gateways that is intended to break down
the barriers between these stovepipes, thereby permitting these
systems to share resources, particularly the applications that
process and store the sensor data. As a result, these new IoT
gateways proposed here will permit the processing of sensor
data to be consolidated and optionally distributed or moved
closer to the IoT devices themselves.

A common example of these stovepipe IoT systems, and
the challenges that these systems often present, is a home that
contains IoT devices from multiple vendors, such as smart
speakers. For instance, a homeowner might connect both a
Google Nest Mini and an Amazon Echo Dot to their home
network. Each of these IoT devices is a closed system, and
is unable to share resources, subsystems, or procedures with
devices from other vendors. Each IoT device is managed by
its own smartphone application and communicates with its
own cloud-based application. The user must learn and use
two different applications to configure and manage the smart
speakers. More importantly, because the data from the smart
speakers is forwarded to their respective applications, it is dif-
ficult for a single application to process the consolidated data
from all of the devices simultaneously, perhaps correlating or
fusing data from these separate devices. Likewise, processing
the data from the smart speakers locally, or at the “edge” of the

home network, is extremely difficult, because the data largely
resides in the vendors’ cloud-based applications.

Several major cloud service providers (CSPs), including
Amazon, Microsoft, and Google, have made available IoT
gateway frameworks, or software development kits (SDKs),
that simplify the development of IoT devices. IoT device
vendors can use these CSP-provided SDKs to simplify the
development of their IoT systems: the SDKs can be used
as a platform upon which to develop software that connects
the vendor’s IoT device to a cloud-based application. Un-
fortunately, each of these CSP-provided SDKs connect only
to the respective vendor’s cloud service. For our purposes,
we call these CSP-provided IoT gateway platforms as cloud-
centric, inasmuch as they connect IoT devices only to the cloud
services of that CSP.

We propose an edge-centric model for developing IoT
gateways. Instead of merely connecting IoT devices to cloud
services, our edge-centric 10T gateway framework is designed
to i) leverage computing and storage capabilities at the network
edge (e.g., a Raspberry Pi device or a PC server collocated
at a home Internet gateway or wireless base station) for
edge-based device and IoT service management (e.g., fault
detection, dynamic service subscription), data processing (e.g.,
data filtering & aggregation), and so forth; and ii) exploit
availability of multiple cloud services (from different vendors)
for “best” (e.g., fastest or cheapest) IoT data analytics. We
summarize the outline and major contributions below.

e (Sec. II) We study three leading CSPs IoT solutions to
ensure our proposed framework augments current IoT
gateway solutions . We especially evaluate similarities
and differences between them to identify north-bound
(cloud facing) and south-bound (on-premise IoT gateway
facing) interfaces that can be leveraged within our pro-
posed gateway framework.

e (Sec. IV) We propose VeerEdge - an edge-centric IoT
gateway framework, that exploits the availability of mul-
tiple cloud services, storage and computing capabilities
on the network for edge-based device management and
configurations and “best” IoT data analytics.

o (Sec. V) We investigate a critical IoT gateway functional-
ity dubbed - Regulator that realizes the edge-centric gate-
way vision by controlling the communication between
vendor-specific [oT gateways and their respective cloud
services. Proof-of-concept prototype using Amazon AWS
and Microsoft Azure as case studies show that (VeerEdge)
incurs additional negligible overhead and minimal la-
tency.

978-1-7281-9586-5/21/$31.00 ©2021 IEEE 690
DOI 10.1109/CCGrid51090.2021.00083

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 20:08:00 UTC from IEEE Xplore. Restrictions apply.

II. TERMINOLOGY AND BACKGROUND

In this paper, we use the term “IoT edge device”, or simply
”IoT device”, to describe the end nodes in IoT systems,
specifically the components that include sensors or actuators.
These are the devices that generate IoT sensor data, or make
changes in the physical world in response to commands. For
the purposes of this paper, we classify IoT devices into two
categories:

1) ”cloud-native” devices: IoT devices that are able to
connect directly to applications running on a cloud service
using media such as Wi-Fi or cellular service '. Typically,
cloud-native devices are “locked” to a specific application
running on a particular cloud service.

2) “gateway-assisted” devices: IoT devices that are inca-
pable of connecting directly to an application running on
a cloud service, and therefore require the services of an
IoT gateway to forward sensor data to a remote application
for processing. Gateway-assisted IoT devices usually connect
to an IoT gateway via a low-power wireless medium such
as Bluetooth, Zigbee, Z-Wave, Thread, or similar protocol
because they lack the functionality to necessary communicate
directly with cloud-based applications. Examples of these
gateway-assisted devices include: door or window sensors,
temperature Sensors, or water sensors.

The data generated by the IoT devices is communicated to
its end users using a pub-sub system. A pub-sub system is an
asynchronous way of communicating between entities where
a subscriber of a topic receives all the messages published to
that topic. Amazon refers their [oT pub-sub system as message
subscriptions [7] while Azure names it as routes [8]. In this
paper, we will consistently use the term message subscriptions
or paths irrespective of the vendors. There are three fields
required for a message subscription [7]. First, the source, from
where the message originated. Next, the destination, to which
the message needs to be sent. And finally, the topic to which
one can subscribe to or publish message to.

”IoT portal/cloud” is the entry-point on the cloud. It
is tied to and authenticates only specific vendors’ de-
vices and gateways and is largely responsible for heavy
analysis(computation), deployment, notifications and updates.
IoT gateways manage and provide connectivity to cloud-
based applications for gateway-assisted IoT devices. Com-
mon consumer-grade examples of [oT gateways include smart
home gateways or home automation gateways, such as the
Samsung SmartThings hub. These devices implement the
protocols necessary to communicate with a cloud service and
applications running on that cloud service. Typically, IoT
gateways implement a light-weight messaging protocol, such
as MQTT or CoAP, which manages the transfer of sensor
data and commands between the IoT device and a cloud-based
application.

An “Edge function” run as containers [9] in the IoT
Gateway which is managed by the IoT Gateway’s run-time.

"While we often describe applications as running on a cloud service, they
could, in fact, be running on any sort of server.

691

Container is a unit of software that contains code and all
its dependencies (run-time, system tools, system libraries and
settings) as a single package. In Azure IoT, the containers
packaged with custom code are called modules. And in AWS
IoT, these containers are called as lambda functions [6].
Additionally, in AWS, the lambda functions can run as an
individual process in the IoT Gateway instead of a container.
As shown in Figure 2, local database, web-server, machine
learning services are some of the examples for a edge function.

= s

) N
g’ 0 LIOTCIoud#D
—>

@ loT Gateway £=p JL Lo
lﬁ_l 41
Gateway-assisted

devices Cloud-native
devices
Fig. 1. Cloud-native and gateway-assisted IoT devices

Major cloud service providers offer what we refer to as
”IoT cloud services”, specialized services that support IoT
devices and IoT gateways. For example, these IoT cloud ser-
vices generally support one or more common IoT messaging
protocols, such as MQTT or CoAP. While terminology differs
among cloud vendors, we refer to these IoT-specific services
as ’loT portals”. Cloud-hosted applications process and store
IoT sensor data, initiate notifications in response to IoT sensor
data, and manage IoT devices and users.

A. Cloud-Centric IoT Gateways

Recently, several CSPs, including Google [2], Amazon Web
Services (AWS) [10] and Azure [11] have made available IoT
gateway platforms, or SDKs, that [oT vendors may integrate
into their IoT devices or gateways. These CSP-provided SDKs
simplify the development of IoT devices and gateways, but at
the expense of locking the vendors into the SDKs’ respective
cloud services. We summarize their similarities and differences
in Table I and briefly discuss them here.

1) AWS IoT Core: Amazon’s IoT Gateway SDK is called
”Greengrass” (GG) [12]. One major feature of Greengrass is
the runtime. GG’s runtime serves both as a client to the AWS
cloud and a server to “gateway-assisted” AWS devices to mar-
shal data and enable bi-directional communication between
these entities. GG’s runtime is equipped with a modified Paho-
based MQTT 3.1.1 implementation over TLS 1.2 encryption
(MQTT over Websocket) with X.509 certificate-based mutual
authentication [1] 2. The runtime also offers support for
Lambda functions — a server-less compute service to run code
in response to an event [10]. This functionality may simplify

2 At the time of writing this paper, GG V1 included MQTT QoS 0, “fire and
forgot” which does not require any acknowledgement and QoS 1, “fire and
wait for acknowledgement” ensures an acknowledgement is received.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 20:08:00 UTC from IEEE Xplore. Restrictions apply.

TABLE I
FEATURES SUPPORTED IN CURRENT VENDOR-LOCKED IOT GATEWAYS

Features | AWS [Azure [Google |
Modified Paho MQTT 3.1.1 MQTT 3.1.1 Paho MQTT 3.1.1
Protocols (QoS 0 & QoS) 1 HTTP[S] 1.1 over TLS 1.2 QoS 0 & QoS 1
HTTP[S][1] AMQP HTTP[S] 2], [3], [4]
Securit X.509 CA Signed X 509)(5.212?Sicﬁe§11§2ret?ﬁcates JSON
¥ X.509 Self-Signed certificates [1] ’ e Web Tokens [5]
& Symmetric keys
Containerization Support v’ v’ X
Message Subscriptions v’ v’ X
Stream Manager v’ X X
Device Twins/Shadow v’ v~ X
On-demand Containerization [6] N X X
Device Monitoring X v’ X

events-response and control within IoT applications. The GG’s
runtime maintains [oT device state information using “Device
shadows” via a JSON serialization format [1] which simplifies
management for mobility support. Additionally, the runtime
performs data aggregation, queuing and scheduling before
forwarding IoT data to the cloud.

2) Microsoft Azure IoT: Microsoft Azure IoT gateway
SDK is also equipped with a customized runtime. At this time,
the runtime relies on a broker to communicate with the cloud.
This broker can be configured with either MQTT 3.1.1, AMQP
or HTTP 1.1 protocols secured with TLS 1.2. and token-based
authentication [13]. Azure provides a simplified version of
Lambda functions called “modules” — to run code based on a
trigger [8]. Mobility support is provided via “’device twins” —
a customized but different > JSON serialization format [14] to
maintain IoT device state information.

3) Google IoT Core: Googles’ gateway SDK is an
embedded-device SDK. It supports HTTP 1.1 or a custom
Paho-based MQTT 3.1.1 protocol with TLS 1.2 with JSON
Web Tokens (JWTs) [15] for authentication [2], [3], [4].
Google’s gateway does not have a runtime. However, device
state information is maintained using “’device metadata” (max-
imum size of 256 KB), ”device configuration” (maximum size
of 64 KB) and “device state” (maximum size of 64 KB) [16].
Unlike Azure and AWS that only support JSON serialization
format, Google also supports binary, text or serialized protocol
buffers data formats [16].

We acknowledge that these vendor gateway SDKs render
significant contributions within the IoT systems. Nonetheless,
they all embrace a cloud-centric approach and still posses
major drawbacks. Next, we describe their drawbacks and then
make a case for an edge-centric approach for IoT gateways.

III. CHALLENGES WITH CLOUD-CENTRIC IOT GATEWAYS

Due to the recent surge of [oT devices, several [oT applica-
tions have been deployed in the cloud to perform computation
on the IoT data. Limitations like latency perceived by end-
systems, and increased bandwidth usage between the end-
systems and the cloud ought to move IoT data computa-

3When compared with AWS device shadows.

692

tion towards the edge. However, key-players like Microsoft,
Amazon, and Google only allow the management of IoT
data on the cloud. This in turn makes the management of
IoT data that utilizes cloud-based applications from different
vendors, cumbersome. In this section, we explain in detail
these challenges posed by cloud-centric IoT gateways. As a
results, presents a unique opportunity to advocate an edge-
centric IoT gateway in order to unlock the benefits of various
IoT applications provided by different vendors and to also
enable convenient management of IoT data.

A. Cloud-Centric loT Gateways: Issues

To marshal IoT data in current industrial IoT solutions,
message subscriptions needs to be configured in the cloud and
then deployed in the IoT gateways. The data from IoT devices
is then routed through the IoT gateway to the relevant users
based on these subscriptions. This, however, poses several
challenges in developing innovative and rich IoT solutions,
as discussed next.

Cumbersome cloud-based IoT device configuration. In-
order to disable or enable communication of IoT devices with
the cloud, we need to completely remove or re-add the paths
that exist in the cloud and redeploy them on the IoT gateway.
In AWS and Azure, the paths need to be configured to enable
communication between IoT devices, edge functions and the
IoT cloud.

Inflexible cloud-only IoT data management. Cloud-only
management of IoT data makes its management very difficult.
To utilize applications from different CSPs’ clouds, we need
multiple IoT gateways and also need to configure several paths
on each cloud portal. Such configurations in the cloud portal
incurs higher latency since the cloud is generally far away from
the end-users. Moreover, these paths have to be deployed in the
IoT gateway after re-configuration in the cloud, thus, adding up
to this latency. For example, if a building already have a Azure
IoT gateway, in order to send videos data from an IP camera
to AWS Kinetic Streams, an AWS GG IoT gateway need to
be installed and configured in the building. Management of
multiple IoT gateways is time consuming and challenging due
to maintainability.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 20:08:00 UTC from IEEE Xplore. Restrictions apply.

Real/Simulated
loT Devices

VeerEdge Gateway

Edge
Devices

IoT Cloud
e Clou
Stors

(7]
Edge
DEVices E Tag;, steer
Lo _— polic
: \
=1 \

Edge
Devices |5

keys, certs, auth. mechanisﬁg/é

SE Cloud
Cloud sirahm Sto

Lambda Functions

Modules/-< - >MQTT, HTTP or COAP———pinti

portal Analytic
me

" Vendor A () Vendor B Vendor C

Fig. 2. Edge-Centric IoT Gateway Framework

No/little support for cross-vendor edge computation
and data analytics. Vendor IoT gateways use the paths
deployed in it to simply forward the IoT data to vendor-specific
applications hosted in the cloud. The inability to configure
these paths at the edge prevents IoT data to be dynamically
routed to other CSPs’ cloud or edge. Leveraging “better”
stream analytics and machine learning application of another
vendor is extremely difficult and impractical.

B. Case for an edge-centric IoT gateway

The challenges identified in the previous subsection leads
us to advocate an edge-centric architecture for designing IoT
gateways. Instead of merely connecting IoT devices to cloud
services, we envision an edge-centric IoT gateway that i)
leverages computing and storage capabilities at the network
for edge-based device management, configuration and control,
and ii) exploits the availability of multiple cloud services (from
different vendors) for ’best” (e.g., fastest or cheapest) IoT data
analytic. An edge-centric IoT gateway ought to enable sending
IoT data to clouds of different vendors instead of locking it to
a specific vendor. Moreover, Edge-centric IoT gateways also
make IoT applications less prone to security attacks since there
is more privacy compared to in the cloud as the data resides
locally. We achieve this by introducing regulator. Regulator is
a subsystem built atop existing vendor IoT gateway SDKs and
enables flexible device configuration and data management,
dynamic cloud service subscriptions and message routing. We
provide a detailed description of regulator later.

IV. HOW TO ADDRESS THESE CHALLENGES?

Given the challenges mentioned earlier, in this section, we
discuss various solution approaches and highlight their limita-
tions. We, then present our VeerEdge IoT gateway architecture
design.

A. Re-designing the IoT Gateway

One approach to address these challenges might be to re-
design an IoT gateway from scratch. This gateway should be

693

open and not tied to any specific CSP IoT cloud portal. Rather,
it should provide multi-cloud support to connect, communicate
and exchange data with several vendor IoT cloud portals while
still enabling local configurations. This approach replaces the
current CSPs’ IoT gateway solutions and imposes a unified
ontology or a consensus of the communication protocols and
RESTFul APIs adopted. According to the European project
Unify-IoT, more than 300 IoT cloud platforms exist today
[17]. Therefore, an obvious problem with this approach is its
inability to work with existing IoT cloud portals, i.e., CSPs
may need to re-design their IoT cloud portals to add support
for the unified APIs and protocols. This is impractical, time
consuming and might be less beneficial for some vendors.
Thus, several vendors might be reluctant to proceed with an
agreement.

B. Building atop current IoT solutions

In this study, we take a different approach. Instead of
re-designing an [oT gateway from scratch, we build atop
existing IoT gateways and only leverage their runtimes. We
propose a wrapper dubbed, Regulator which leverages vendor
gateway SDKs to connect to their respective IoT cloud portals.
Specifically, this approach augments current systems’ runtimes
and take control of all communication happening between the
different vendor IoT gateways and their clouds portals.

The limitations with our approach are two folds. 1) There
is no unified way for the IoT devices to communication with
the IoT gateway. Each vendor will still advocate its unique
security mechanisms for IoT device to authenticate with the
IoT gateway. 2) This solution is limited to ”gateway-assisted”
IoT devices. Nonetheless, in this study, we investigate this
approach and augment current IoT gateway SDKs enabling
multi-cloud support, edge-computation, dynamic manageabil-
ity using payload information within Regulator, while still
using the cloud.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 20:08:00 UTC from IEEE Xplore. Restrictions apply.

vorkers

P
Local """
Database -
S d
\
b
D

Regulator }--~

B)

Fig. 3. Regulator operation scenario.

C. Proposed VeerEdge Gateway Design

Fig. 2 summarizes the detailed architecture of VeerEdge. We
discuss the major components of VeerEdge below.

1) Runtime: In our design, the runtime does the heavy
work. We build atop existing [oT gateways by leveraging
existing vendor gateway runtimes. AWS GG and Azure IoT
gateway runtimes come pre-build with a task scheduler, and
an MQTT Broker. We therefore use both runtimes during our
implementation and show evaluation results in Sec. V. We
augment their runtimes with Regulator - edge function.

2) IoT gateway SDKs: Within our edge-centric IoT gate-
way, we run Google, Azure and AWS gateway SDKs [18],
[11], [12] as edge functions. They provide the RESTFul APIs
to communicate with their IoT cloud portal. However, as
describe later in sec. IV-C3, Regulator controls all paths in
our design bringing IoT data closer to the edge. We host a
local database for data storage and a web server for local
configurations and management, alleviating the cloud-centric
management.

3) Regulator: Regulator is primarily controlled by user
configuration via the local webserver. Specific configuration
options like “’disable publish to cloud”, ”delete path x” and
“create path y” can be configured. We consider “disable
publish to cloud” in Sec. V within regulator during our
implementation. This is because, our approach here involves
creating and deleting (temporarily disabling) paths. Tradition-
ally, performing this function (disable publish to cloud”)
requires, manually deleting and re-deploying the configuration
locally on the gateway on premise. In VeerEdge, the webserver
performs a runtime interrupt via regulator. (i) Regulator lever-
ages the runtimes’ exposed APIs to discover the current static
paths (source, destination, topics) pairs. (ii) It creates (if it
does not exist) a new “shared topic” and subscriber (usually
the local database) on the system and (iii) temporally disables
the cloud facing path and redirects every packet via the new
“topic” (path). This simple operation is summarized in Fig. 3.

By means of this functionality, Regulator can, 1) dynami-
cally operate on all vendor IoT Platform SDKs edge functions
deployed on the system, 2) avoid downtime that exist when re-
deploying new cloud configurations and 3) seamlessly reduce
unconnected “’stovepipes” between vendors, thus interoperabil-
ity. However, for the first time, the path need to be configured

694

in the IoT cloud and deployed to the IoT gateway. And the
regulator controls the paths thereafter.

—— Regulator "‘[
@ 0.10 4{ —— NoRegulator 1
> \ |
g U”
qE) 0.06 m
o.oz-v[#W\Avu// \ ~V\,LJ?’W

40 60
Number of Pkts sent

20 100

Fig. 4. AWS runtime time delay - Jetson Nano

V. IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation and evalua-
tion results of our proposed design.

A. Implementation

We first implemented VeerEdge on a Raspberry Pi2 and
show preliminary implementation results in [19]. Next, we
extended our evaluations and implemented VeerEdge on an
NVIDIA Jetson Nano. The web-server is used for local con-
figuration of paths, the local database stored IoT data locally
and Vendor A, B and C SDKs are Google’s, Azure’s and
AWS’ Gateway SDKs equipped with all security context for
authenticating and communicating with their clouds portals.
Regulator leverages these SDKs to control and steer traffic
based on the paths configured. At start-up, regulator takes
over the paths and controls the traffic based on the local
user configuration. Through this implementation, we were able
to enhance the existing [oT Gateway frameworks to support
local enable or disable of the message subscriptions without
using the cloud portal. Since the paths already exists, the
communication between two entities pass through without
any issues and our implementation controls the pass-through
only to disable or alter the communication. Through this
approach, we have eliminated cloud-based configuration and
an additional deployment. Additionally, regulator enables the
local control of paths between vendor-specific IoT Gateway
and multi-vendor IoT clouds, which is not supported with
current vendor Gateways.

B. Evaluation

First, we seek to quantify the additional delay incurred
by processing every packets via regulator. We simulated
IoT devices to publish data to our universal gateway and
logged the time when every packet was sent. We configured
a path to route every packet to the local database, where we
logged the time every packet was received. We repeated this
experience with and without regulator. In Fig. 4, we show
the additional delay incurred with regulator (the blue curve)
and without regulator (the red curve) leveraging the AWS
GG runtime. Noticed that, regulator incurs negligible overhead

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 20:08:00 UTC from IEEE Xplore. Restrictions apply.

A |
204 Regulator U‘ ‘
—— NoRegulator \ 1
I Z 401 \
5 15 = \
o [4 ‘\
© [Q |
10 A | 2 39 4 1
b . A /\ A . C |
5177] i,ﬁ%_ﬂl,www_fvlq 38 : : , : : .
0 20 40 60 80 0 20 40 60 80 100

Time [Seconds]

Time [Seconds]

Fig. 5. AWS runtime memory and cpu utilization - Jetson Nano

while addressing interoperability challenges in current CSPs’
IoT platforms.

Next, we collect the CPU and memory utilization with and
without regulator to understanding the additional overhead in-
curred with our approach. As shown in Fig 5, augmenting both
AWS GG runtime with regulator result in more CPU and mem-
ory usage as expected. This is because, all packets through the
gateway are processed by regulator, i.e., the payload needs to
be matched to paths deployed on the system before routing.
These results show this approach incurs additional negligible
overhead and minimal latency. It is important to mention that,
we acknowledge that, the additional overhead incurred by this
approach can be problematic in low latency IoT application
scenarios. Nonetheless, the results are promising.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we make the case to advocate a shift from
a cloud-centric to an edge-centric approach in IoT gateways.
We proposed regulator, which augments current vendor-locked
IoT platform solutions by controlling paths from various
vendor gateway SDKs to the cloud. We evaluated our meth-
ods by using both AWS and Azure runtimes. Our exper-
iments show that our approach incurs negligible overhead
and minimal latency. Although we developed an approach to
support interoperability from the IoT Gateway to the cloud,
unlocking multi-vendor downstream IoT devices to vendor IoT
Gateway still remains a challenge, especially since vendors
adopt custom security mechanisms in their IoT devices, gate
SDKs and IoT cloud. Moreover, there is no standard message
subscriptions framework followed by the CSPs: AWS uses
MQTT topics and Azure uses endpoints. This challenge is
left for future works. Our experiments clearly show that the
resource consumed by the Azure IoT Gateway framework
is relatively higher than the AWS Greengrass. Thus, further
exploration of both frameworks to understand why can be
a possible research direction. In summary, suggested future
research direction can be; 1) addressing the interoperability
issues with vendor IoT edge devices and 2) building an IoT
gateway runtime that supports heavy edge computational tasks
and connects to multiple vendor cloud platforms.

VII. ACKNOWLEDGEMENT

The research was supported in part by NSF under Grants
CNS-1618339, CNS-1617729, CNS-1814322, CNS-1836722
and CNS-1901103.

695

[1]

[2]

[3]

[4]

[5]

[6]
[7]

o0

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

A. ToT, “Aws iot developer guide,” pp. 428 — 472, 2020. [Online].
Available: https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.
pdf#iot-device-shadows

G. C. , “Overview of internet of things solutions
google cloud,” Google Cloud, 02 2019. [Online]. Available: https:
//cloud.google.com/solutions/iot-overview

G. Cloud, “Publishing over the http bridge — cloud iot core
documentation,” Google Cloud, 2019. [Online]. Available: https:
/Icloud.google.com/iot/docs/how-tos/http-bridge

——, “Publishing over the mqtt bridge — cloud iot core documentation,”
Google Cloud, 2019. [Online]. Available: https://cloud.google.com/iot/
docs/how-tos/mqtt-bridge

G. IoT Core, “Using json web tokens (jwts) cloud iot
core documentation,” Google Cloud, 06 2020. [Online]. Available:
https://cloud.google.com/iot/docs/how-tos/credentials/jwts

A. AWS, “Aws lambda — product features,” Amazon Web Services, Inc.,
2019. [Online]. Available: https://aws.amazon.com/lambda/features/
AWS, “Configure devices and subscriptions,” Amazon.
[Online]. Available: https://docs.aws.amazon.com/greengrass/latest/
developerguide/config-dev-subs.html

Microsoft, “Deploy azure iot edge modules from the azure portal,”
Microsoft. [Online]. Available: https://docs.microsoft.com/en-us/azure/
iot-edge/how- to-deploy-modules-portal

Docker, “What is a container?” Docker. [Online]. Available: https:
/Iwww.docker.com/resources/what-container

AWS, “Run lambda functions on the aws iot greengrass
core - aws iot greengrass,” docs.aws.amazon.com, 11 2018.
[Online]. Available: https://docs.aws.amazon.com/greengrass/latest/

developerguide/lambda-functions.html

Microsoft, “Configure an iot edge device to act as a transparent
gateway,” Microsoft. [Online]. Available: https://docs.microsoft.com/
en-us/azure/iot-edge/how- to- create-transparent- gateway

AWS, “Machine learning inference with aws iot greengrass solution
accelerator,” Amazon Web Services, Inc., 10 2019. [Online]. Available:
https://aws.amazon.com/iot/solutions/mli-accelerator/

M. kgremban, “Learn how the runtime manages devices - azure
iot edge,” docs.microsoft.com, 11 2019. [Online]. Available: https:
//docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime

Microsoft, “Understand azure iot hub device twins,” docs.microsoft.com,
February 2020. [Online]. Available: https://docs.microsoft.com/en-us/
azure/iot-hub/iot-hub-devguide-device-twins

M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt).”
[Online]. Available: https://tools.ietf.org/html/rfc7519

G. Cloud, “Devices, configuration, and state — cloud iot core
documentation,” Google Cloud, 06 2020. [Online]. Available: https:
/Icloud.google.com/iot/docs/concepts/devices

U.-I. Project, “Deliverable d03.01, report on iot platform activities,”
2016. [Online]. Available: https://docbox.etsi.org/SmartM2M/
Open/AIOTI/IoTPlatformsAnalysisTolmprove/D03_01_WP03_H2020_
UNIFY-IoT_Final.pdf

Google, “Using gateways,” Google. [Online]. Available: https://cloud.
google.com/iot/docs/how-tos/gateway

U. K. Dayalan, R. A. Fezeu, N. Varyani, T. J. Salo, and Z.-L.. Zhang,
“Eciot: Case for an edge-centric iot gateway,” in Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications,
2021, pp. 154-156.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 11,2021 at 20:08:00 UTC from IEEE Xplore. Restrictions apply.

		2021-07-30T18:10:33-0400
	Preflight Ticket Signature

